

A Machine Learning Driven Analysis of Private Equity Funding in Seed-Stage Healthcare Startups

GENE 225 - Spring 2022 Sharan Ramjee

Introduction

Motivation:

- The seed stage is extremely crucial for healthcare startups Ο
 - They face high barriers to entry (patent filing, long development periods, etc.)
- Private equity plays a pivotal role in financing these expenses Ο
 - No information in literature on the factors driving their investments due to risk of exposing their play-books to competitors

Our Approach:

- Novel Machine Learning (ML) driven analysis of these factors Ο
 - **Dataset**: Crunchbase
 - **Model:** Gradient Boosted Decision Trees
 - **Technical Approach**: Shapley Additive exPlanations (SHAP)
- Two step process for analysis: Ο
 - Train ML model on Crunchbase data
 - Use SHAP to probe ML model and gain insights

Dataset

Collection:

- Very recent data (May 2022) from Crunchbase
- Limited to seed-stage healthcare startups headquartered in the United States Ο
- Tabular dataset with 1,000 examples Ο
 - **Features**: investors, founders, products, patents, etc.
- Train-test split of 90-10 Ο
 - 10% (100 examples) used for test set

• Pre-processing:

- Data Type Conversion: Ο
 - Numeric data: Convert to floats
 - String data: Convert to one-hot floats
 - List data: Convert to one-hot floats
- Missing values: Ο
 - **Zeros**: Replace appropriate features with zeros (Number of active products, etc.)
 - **Means**: Replace appropriate features with averages (Website average visits, etc.)

Model

• Architecture:

- Regression model because output is continuous variable (total funding amount) Ο
- Need tree-based ML model for human-interpretable results Ο
- Use grid-search for hyperparameter-tuning Ο
- Use Mean Average Error (MAE) to evaluate performance Ο
 - Appropriate since the output is a \$ value

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Candidates:

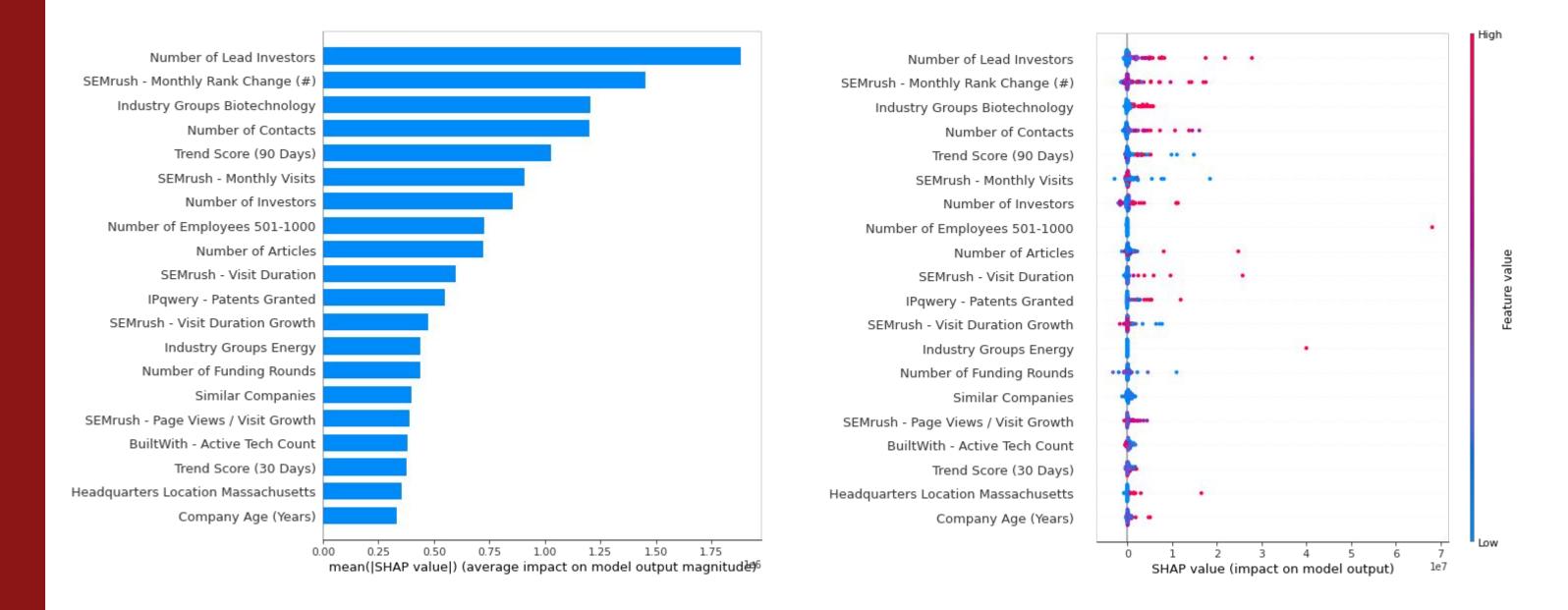
- **Random Forest**: MAE of 3,223,089.82 Ο
- Gradient Boosted Decision Tree: MAE of 3,152,521.54 Ο
 - Choose this because lower (better) MAE

Technical Approach

• ML Explainability Method:

- SHapley Additive exPlanations (SHAP) satisfies several beneficial properties: Ο
 - SHAP scores are a measure of feature importance (rank features)
 - Enforces assumption of independence of features:
 - SHAP scores are a result of causal inference
 - SHAP scores take feature correlations into account

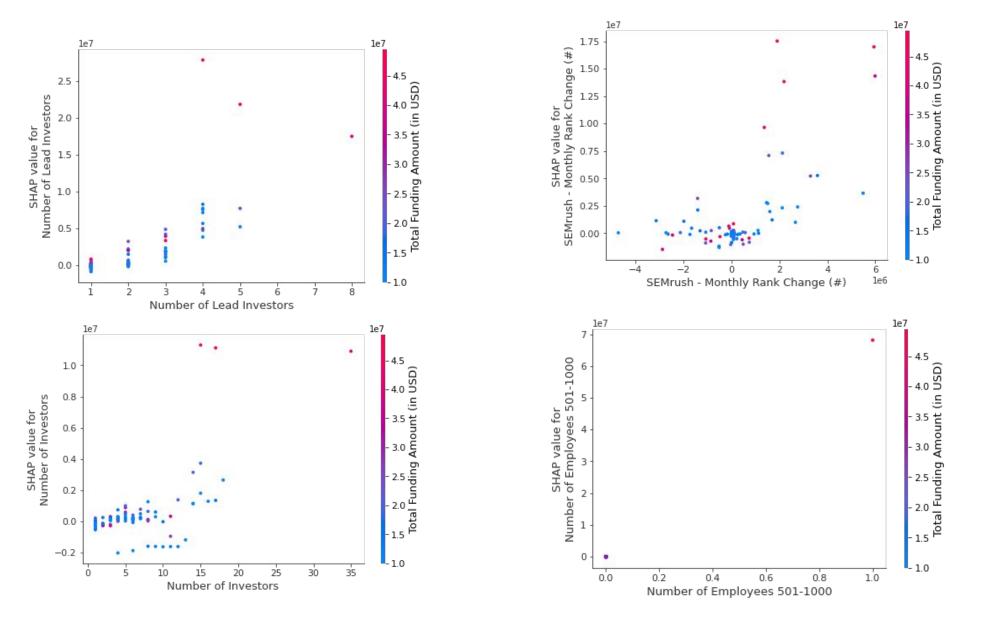
$$SHAP_{feature}(x) = \sum_{set: feature \in set} [|set| \times \frac{F}{|set|}]^{-1} [Predict_{set}(x) - \frac{F}{|set|}]^{-1$$

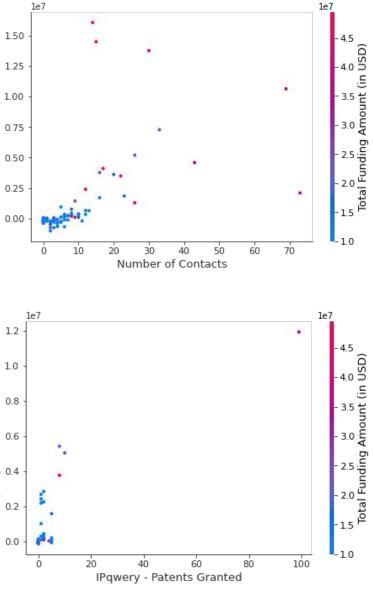

- Analysis Types:
 - Some results omitted to keep slides concise Ο
 - **Global**: Over a batch of examples Ο
 - Examine important factors in top and bottom 100 companies with most funding
 - **Local**: Over a single example Ο
 - Examine important factors in top and bottom 3 companies with most funding

$Predict_{set \setminus feature(x)}$

Global Analysis

Top 100 Companies (By total funding amount):


- 20 most important features by mean(|SHAP value|) on left 0
- Individual company SHAP values for 20 most important features on right Ο



Deeper Global Analysis

• Dependence Plots:

- Feature SHAP values vs feature values
 - Color signifies total funding amount raised
- Plot for most important features
 - Investigate results in literature to support our analysis

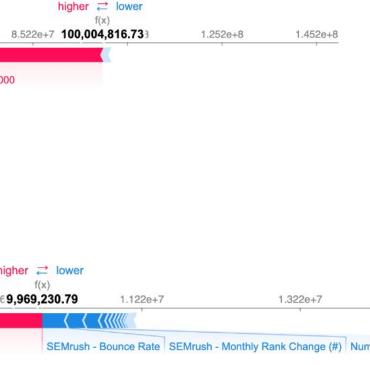
Local Analysis

• Force Plots:

- ML model prediction of funding raised very close to ground-truth value Ο
 - High fidelity/faithfulness in results
- **Positive forces** (red and to the right): Make funding amount higher Ο
- **Negative forces** (red and to the left): Make funding amount lower Ο

Top 1 Company (By total funding amount):

Insightful Science Ο


							base value					
-1.348e+8	-1.148e+8	-9.478e+7	-7.478e+7	-5.478e+7	-3.478e+7	-1.478e+7	5.221e+6	2.522e+7	4.522e+7	6.522e+7	8	
	1	1	1	1	1			1		1		
								/				
							Nun	Number of Articles		Number of Employees 501-1000		
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Bottom 1 Company (By total funding amount):

Gilead Sciences \bigcirc

				hase value		nig
-2.779e+6	-7.787e+5	1.221e+6	3.221e+6	base value 5.221e+6	7.221e+6	9.221e+6 9
,	<u>x</u>	,			\rangle	
Total Braduate Active N	umber of Employees 1.10 Industry Groups	Software Trand Score (00 F	Dave RuiltWith Active Tech Cou	int Trond Score (7 Dave) Similar	Companies Industry Gr	ouns Piotochnology

Industry Groups Biotech Iotal Products Active | Number of Employees 1-10 | Industry Groups Software | Trend Score (90 Days) | Builtwith - Active Tech Count | Trend Score (7 Days)

Summary

• Advantages:

- **Data**: Used highly recent data for more up-to-date results
- **Pre-processing**: Used best feature encoding to get most out of features Ο
- **ML**: Used tree-based ML model that not only achieves impressive performance, but makes Ο results human interpretable
- **SHAP**: Used SHAP to enforce assumption of independence of features to ensure causal inference (no negative impact due to correlations among features)

• Disadvantages:

- Lack of features: Some critical features that can play a critical role in ML model performance Ο were not available in the dataset. Ex: credibility/track-record of investors
- Lack of feature characteristics: Some features can have both positive or negative influence
 - Ex: Number of articles feature can have positive impact if the articles about the company were positive and a negative impact if these articles were negative

Overall:

- Our approach successfully analyzed and evaluated the factors driving private equity Ο investment decisions in seed-stage healthcare startups
 - Results supported by other papers in literature (references in paper)

Thank You!

Code and Results: https://github.com/sharanramjee/healthcare-vc-shap