
Methodology
Setup

Given that our goal is to efficiently classify cluttered objects, we subsampled the 
dataset with a sampling rate of 1/10 (i.e. discarded 9/10 frames for every clip) to 
reduce meta-training time by 10x without any noticeable loss in performance. We 
replaced the meta-training dataset consisting of clean images with cluttered 
images to better match realistic scenarios where clean data in not available.

Forced Attention
In order to enable the model to focus on the object in cluttered backgrounds, we 
blacked out the part of the images not in the bounding box in order to simulate the 
effect of using an attention mechanism. We use two approaches: applying the 
masked images during meta-training on the support set only to generate prototype 
features and applying the masked images during meta-training on the query set 
only for classification.

Object Detection Head
We hypothesized that using forced attention led to such a drastic drop in 
performance as a result of using deterministic bounding boxes instead of learning 
to probabilistically estimate them. Thus, we added another output head to 
estimate the bounding box coordinates and dimensions during meta-training on 
the query set.

LITE Backpropagation Sampling Heuristics
Blur Heuristic

We applied a blurriness heuristic where the most blurry images (as determined by 
the variance of the laplacian) were sampled from the support set during 
backpropagation. This resulted in a small improvement in performance, perhaps 
as a result of increasing the difficulty of the meta-training tasks.   

BBox Heuristic
We applied a bounding box heuristic where the images with the smallest bounding 
boxes were sampled from the support set during backpropagation. This resulted in 
noticeable improvements in performance, perhaps due to the same reason earlier 
stated reason.

Experimental Results
The table below outlines the average frame and video accuracies over the 95% 
confidence intervals along with the corresponding standard deviations.

*Baseline result from LITE paper

Discussion and Analysis

○ The above images show examples of common classifier failure cases due to 
issues with poor positioning, occlusion, blurriness, and extreme clutter.

○ The subsampled dataset provides the best speed-performance trade-off with 
10x improvement in speed but minimal decreases in accuracy.

○ The most blurry backpropagation subsampling heuristic led to marginal 
improvements in performance over the baseline.

○ The smallest bounding box backpropagation sampling heuristic led to the 
greatest increase in performance over the baseline.

○ Both these improvements in performance can be attributed to an increase in 
the difficulty of the meta-training tasks.

○ Masking the support set for prototype generation failed to improve accuracies.
○ Performing object detection led to slightly worse performance compared to the 

baseline due to an overly simplistic/under-trained object detection model.
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Background and Motivation
The ORBIT dataset was developed to serve as a benchmark to train object 
recognizer models to assist people who are visually impaired. ORBIT requires 
models to deal with cluttered frames where the objects are in cluttered 
backgrounds, and the dataset clips are collected by visually imparied users. LITE 
is a meta-training scheme that enables efficient meta-learning on a single GPU for 
tasks with large images by computing an unbiased estimate of gradients by 
sampling a random subset of images from the support set to backpropagate on. 

However, an unbiased estimate may not always the best choice  of the gradient for 
gradient descent. We propose using support set sampling heuristics to estimate  
the gradient in a modification we call FLITE. Additionally, we investigate attention 
and object detection approaches in meta-learning to tackle clutter in the images.

Future Work
○ Fine-tune the bounding box backpropagation subsampling heuristic for the 

optimal point between using the largest and smallest bounding boxes.
○ Use more complex pretrained object detection networks.
○ Meta-train with the subsampling heuristics on multi-step frameworks (eg. 

MAML), unlike the single-step framework of CNAPs and ProtoNet.

LITE
During the inner-loop of meta-learning, LITE training proposes to process the 
support set by computing the forward pass on the entire support set, but 
estimating the gradient by only looking at the contribution of a random subset of 
the support set. This allows for a significant reduction in compute required.

Selected References
1. D. Massiceti, L. Zintgraf, J. Bronskill, L. Theodorou, M. T. Harris, E. Cutrell, C. Morrison, K. Hofmann, and S. 

Stumpf, “ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition,” inProceedings of the 
IEEE/CVF International Conference on Computer Vision (ICCV), 2021

2. J. Bronskill, D. Massiceti, M. Patacchiola, K. Hofmann, S. Nowozin, and R. E. Turner, “Memory Efficient 
Meta-Learning with Large Images,”arXiv preprint arXiv:2107.01105, 2021

Meta-Learning

CNAPs

ProtoNet

e𝞶 t𝝷

f𝝷 Class avg.
Headphones 

(Poor positioning)
Ball 

(Occlusion)
Lip Balm 

(Blurry, not in frame)
Keys 

(Extreme Clutter)

support batch 

query sample

𝟇𝝷

𝟇𝛕

f L

Enc𝝷
Classification.

Obj. Det. dIoU Loss

Cross Entropy Loss

Deodorant
(Before forced attention)

Deodorant
(After forced attention)

Framework Method Support Set Frame Accuracy Video Accuracy

CNAPS Non-Subsampled* Clean 66.3 (1.80) 72.9 (2.30)
CNAPS None Clean 63.92 (1.86) 70.33 (2.31)
CNAPS Least Blur Clean 63.93 (1.86) 70.20 (2.31)
CNAPS Most Blur Clean 63.96 (1.86) 70.67 (2.30)
CNAPS None Clutter 74.63 (2.29) 77.40 (2.59)
CNAPS Largest BBox Clutter 75.16 (2.26) 78.50 (2.55)
CNAPS Smallest BBox Clutter 75.23 (2.26) 78.70 (2.54)

ProtoNet None Clutter 78.14 (2.15) 83.10 (2.32)
ProtoNet Attention (Support) Clutter 74.20 (2.34) 78.40 (2.55)
ProtoNet  Attention (Query) Clutter 77.83 (2.14) 82.30 (2.37)
ProtoNet Object Detection Clutter 78.03 (2.20) 82.50 (2.36)


