¥ Stanford |ENGINEERING

i s

-

Context-Aware Skeleton-based Action
Recognition via Spatial and Temporal
Transformer Networks

CS231N - Spring 2021
Sharan Ramjee, Sofian Zalouk

Stanford University



Human Action Recognition

e Motivation:
o Human action recognition is an important task in video understanding
o Various applications: Robotics, smart homes, autonomous driving,
healthcare monitoring, augmented reality, security and surveillance, etc.

e C(Classification task:

o Inputs: RGB(+D) video
o QOutputs: Action class
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Technical Challenges

Variable size inputs:
o Need to deal with arbitrarily long video sequences

No perfect representation of data:
o Need to model dynamics of important positions over time

Setups are not always consistent:

o Need to deal with variations in lighting, subjects, views, etc.

Subtle differences among actions:

o Need to classify similar actions (standing up vs sitting down)

Action sequences can be long and contain multiple different actions:

o Need to be able to attend to various parts of input
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Skeleton-based Action Recognition

e Pose Estimation models:
o Input: RGB(+D) video data
o Output: Pose skeletons for each frame

e Skeletons are essentially graphs:
o Much more natural representation of video data
o Allow modeling the dynamics of joint positions over time
o Better discriminative capabilities of models trained with graphs
o Significantly reduces the dimensionality of video input data (faster)

e Graph Convolutional Networks (GCNs) + Recurrent Neural Networks (RNNSs):
o GCNs produce rich spatial features from skeletons
o RNNs model long and short term relationships of skeletons over time
o Spatial and temporal attention facilitate focusing on important features

Stanford University



Related Works

e Global Context-aware Attention LSTMs (GCA-LSTMs) [1]:
o Use contextual embeddings from video data that is fed into classifier
o Limitation: Do not use GCNs; poor spatial features, very slow inference

e Spatial-Temporal Graph Convolutional Networks (ST-GCNSs) [2]:
o Connect corresponding joints across frames
o Use GCNs to obtain features that are fed into a classifier
o Limitation: Do not use RNNs; cannot predict skeletons for future frames

e Spatial-Temporal Transformer Networks (ST-TRs) [3]:
o Use transformer self-attention to model both spatial and temporal
dependencies between joints
o Limitation: Do not leverage video context; leads to poor generalization
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Spatial-Temporal Context-aware Transformer
Network (ST-CTR)

e Pose Estimation Model (OpenPose) [NOT USED]:
o Video data — Skeleton data

e Contextual Embedding Model (MSAF):
o Video data + Skeleton data — Contextual embeddings

e Spatial Transformer (S-TR):
o Skeleton data — Spatial features

e Temporal Transformer (T-TR):
o Skeleton data + Contextual embeddings — Temporal features

e Softmax classifier:
o Spatial features + Temporal features — Action classes
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Spatial-Temporal Context-aware Transformer
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Contextual Embedding Model

e Multimodal Split Attention Fusion (MSAF) [4]:
o Splits the video/skeleton modalities into channel-wise equal feature blocks
o (Generates a joint representation that is used to generate soft attention for
each channel across the feature blocks

e Modalities:
o Video stream: I3D model [5]
o Skeleton stream: HCN model [6]

e Two MSAF modules deployed:
o Intermediate level: Early fusion style with 64 channels per block
o High level: Late fusion style with 256 channels per block

e Hyperparameters:
o Suppression power (A): 0.5
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Multimodal Split Attention Fusion (MSAF)
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Spatial Transformer (S-TR)

e Spatial Self-Attention (SSA):
o Applies dot product self-attention within each frame (skeleton)
o Extracts low-level features capturing relations between body parts
o Applies multi-neaded self attention on features obtained using GCNs

e Spatial Transformer (S-TR) Stream:
o Temporal Convolutional Network (TCN) applies 2D convolutions with
kernel K, on temporal dimension to obtain final spatial features
O S-TR(x) = ConVZD(1 K (SSA (X))
o Stacked together to obtain richer features

e Hyperparameters:
o Architecture: 3 x 64 channels + 3 x 128 channels + 3 x 256 channels
o Embedding dimension (key, query, value): 0.25 x C_  at each layer
o Attention heads: 8
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Spatial Self-Attention (SSA) Module
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Temporal Transformer (T-TR)

e Temporal Self-Attention (TSA):
o Applies self-attention across frames (in time)
o Extracts inter-frame relations between the same nodes across time
o Applies multi-neaded self attention on features obtained using GCNs

e Temporal Transformer (T-TR) Stream:
o Symmetrical to that of S-TR except V (spatial dim) replaced with T (time)
o Incorporates MSAF generated contextual embeddings using linear layer
O T-TR(x) = TSA(GCN(x), MSAF (x))
o Stacked together to obtain richer features

e Hyperparameters:
o Same as those of S-TR
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Temporal Self-Attention (TSA) Module
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Dataset

e NTU RGB+D 60 dataset [7]:
o Data collected using a Microsoft Kinect V2
o Classification among 60 different action classes
o Largest in-house captured benchmark for 3D human action recognition

e Contains:
o RGB sequences
o Depth sequences
o Infrared sequences
o Skeleton sequences
m 25 joints with 3D pose features

e Two benchmarks:
o Cross-Subject (X-Sub): Split across subjects performing same task
o Cross-View (X-View): Split across views performing the same task
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Experimental Setup

e Training ST-CTR:

O

o O O O O O

Framework: PyTorch

Batch size: 32

Epochs: 120

Optimizer: Stochastic Gradient Descent (SGD)
Initial learning rate: 0.1

Decay factor: 0.1 at epochs 60 and 90

Loss: Cross-entropy

e Regqularization:

O

O

O

DropAttention for transformers
BatchNorm on input joint and video data
Global average pooling before softmax layer
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True label

Al drink water

A2 eat meal/snack

A3 brushing teeth

A4 brushing hair

A5 drop

A6 pickup

A7 throw

A8 sitting down

A9 standing up

A10 clapping

Al1l reading

A12 writing

A13 tear up paper

Al4 wear jacket

A15 take off jacket

A16 wear a shoe

Al7 take off a shoe

A18 wear on glasses

A19 take off glasses

A20 put on a hat/cap

A21 take off a hat/cap
A22 cheer up

A23 hand waving

A24 kicking something
A25 reach into pocket
A26 hopping

A27 jump up

A28 make a phone call phone
A29 playing with phone/tablet
A30 typing on a keyboard

Qualitative Results

X-Sub benchmark:

Accuracy=88.65%
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X-View benchmark:

Accuracy=93.57%
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Quantitative Results

Method X-Sub | X-View
ST-GCN T7.5% 83.3%
PeGCN 85.6% 93.4%
RA-GCN 87.3% 93.5%
PGCN-TCA 88.0% 93.5%
Sem-GCN 86.2% 92.4%
Mix Dimension 87.2% | 93.4%
PA-ResGCN-B19 | 88.5% | 93.5%
Dynamic GCN 87.3% | 88.6%
ST-TR 85.9% 91.1%
ST-CTR (ours) 838.7% | 93.6%

Table 1. NTU RGB+D 60 test set top-1 classification accuracies
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Ablation Study

Components in the pipeline X-Sub | X-View
S-TR 78.6% | 80.7%
T-TR 78.4% | 80.5%
MSAF + T-TR 82.1% | 85.8%
S-TR + T-TR 85.9% | 91.1%
MSAF + S-TR + T-TR (ST-CTR) | 88.7% | 93.6%

Table 2. Ablation study of the ST-CTR pipeline
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Global Contextual Features

e Sources of errors in other methods:

o Generalizing to different subjects and views
m Different height, angle, etc.
m Need to embed variations in setup as well

o Actions that are very similar (“reading” vs
“writing”)
m Hard to tell based on skeletons alone
m Need to embed nuanced interactions with

pen and paper into model

reading

writing

o MSAF:

o (Generates feature embeddings using both
skeletons (generalize variations) and RGB
(embed interactions) frames

o Allows ST-CTR to outperform other models by
incorporating global contextual feature vectors
when making decisions
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Spatial Self-Attention

e SSA Module:
o Performs Spatial Self-Attention in S-TR stream
o Need to focus on joints that are crucial to classifying action

e Spatial attention maps:

o Node sizes represent importance
o Less apparent in lower layers since receptive fields are smaller

NN

layerl layer3 layer8 layer10

taking a selfie

put on a hat
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Temporal Self-Attention

e TSA Module:
o Performs Temporal Self-Attention in T-TR stream
o Need to focus on frames across time that are crucial to classifying action

e Temporal attention weights:
o Frames that convey most information about action have higher weights

0 10 20 30 40
Attention val
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Takeaways

e ST-CTR addresses:
o Graph Learning Model (GCN):
m Better representation of data to generate richer features

o RNN-based Model (Transformer):
m Variable size inputs
m Can predict actions by generating skeletons for future frames

o Contextual Embedding Model (MSAF).
m Variations in setup
m Actions with subtle differences
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Limitations

e Multi-instance action recognition:
o ST-CTR cannot deal with multiple subjects in the same frame

e Multi-label action recognition:
o ST-CTR cannot deal with same person performing different actions at the
same time

e \/ideo data:
o ST-CTR uses ground-truth skeletons and cannot perform action
recognition on raw RGB video data alone

e Slow inference:
o ST-CTR needs to compute contextual embeddings from high-resolution
Images
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Future Work

e Areas for future improvement:
o Better Pose Estimation models to obtain less noisy skeleton data

o Faster contextual embedding models for fast inference
o Better regularization methods on graphs (DropEdge, DropGraph, etc.)

o Action Prediction using generative graph models to generate skeletons
from transformer embeddings for future frames
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