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Introduction

Publicly available pothole detection datasets largely consist of
high-resolution dashcam footage.

Given the expensive nature of high-resolution dashcams, drivers
instead opt for cheaper, low-resolution alternatives.

As such, object detection models do not perform well for use with a
majority of dashcams due to the domain mismatch between the
high-resolution training data and the low-resolution test data.

We present a novel approach to address this issue for real-time
automated pothole detection through the use of Super-Resolution
Generative Adversarial Networks (SRGANS).
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Related Works

Past approaches for automated pothole detection involved
accelerometers, gyroscopes, wireless lIoT sensors, thermal imaging
cameras, etc.
o High cost / complexity for setting up equipment
Modern approaches leverage deep learning + dashcam footage
o Various YOLOv3 architectures achieved the quickest and most
reliable pothole detection
However, no past work evaluated the effects of super-resolution on
dashcam images
o Kim et al. used SRGAN on images from CCTV cameras before
feeding into CNN-based vehicle model classifier; upscaling from
224x224px to 896x896px led to significant increases in
classification accuracy
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Dataset

3,888 RGB images (from
Stellenbosch University)

= 2,634 images in train set (68%);
627 in val set (16%); 627 in test
set (16%)

= Originally 3680x2760 pixels

= 3 versions of dataset:

» Rescaled to 4K (3840x2160px)

» Downscaled to 720p
(1280x720px)

> Downscaled to 360p
(640x360px)
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Methods

o The pothole detection pipeline consists of an SRGAN followed by a
YOLOv4 model where the SRGAN performs super-resolution on the

incoming stream of low-resolution dashcam frames and the YOLO
model performs object detection.

Stanford University



SRGAN

o The SRGAN consists of a generator, which upscales the low-resolution
(LR) images to super-resolution (SR) images, and a discriminator,
which distinguishes between the HR and SR images and
backpropagates the GAN loss to train the discriminator and generator.
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YOLO

e YOLO network splits input image into grid of cells
o each cell predicts whether center of a pothole is inside of it
o outputs vector w/ confidence scores of all cells + bounding boxes
e Using YOLOvV4 (April 2020) for this project
o Trained on 3 versions of the training set
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Experiments and Results (Quantitative)

Evaluation Metrics

Model Training set  Test set mAP (%) Fl-score
YOLOvV4 (baseline) 720p 720p 64.01 0.67
YOLOv4 4K 720p 60.67 0.64
YOLOv4 4K 4K (SRGAN) 65.84 0.68
YOLOv4 (upper benchmark) 4K 4K (original) 68.79 0.70
YOLOvV4 (baseline) 360p 360p 28.49 0.39
YOLOv4 720p 360p 31.09 0.42
YOLOv4 720p 720p (SRGAN) 60.06 0.65
YOLOV4 (upper benchmark) 720p 720p (original)  64.01 0.67
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Experiments and Results (Qualitative): SRGAN
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Experiments and Results (Qualitative): YOLO
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Demo: SRGAN-to-YOLO Output
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https://docs.google.com/file/d/1PRXxZG6OupyaEl46A7GBDs5Fz9zwWtlL/preview
https://docs.google.com/file/d/169za0XhUcjFkVOjSym0Yt6Z4Xn2irZca/preview

Conclusion

Low-resolution dashcams can be used for
more accurate real-time pothole detection
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Dashcams can record at low Can apply SRGAN for tougher
resolutions to save memory object detection problems

Image sources: Bottom left: https:/en.wikipedia.ora/wiki/Hard_disk_drive Bottom right: https://www.mentalfloss.com/article/51292/night-sky-6-hours-star:
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Future Work

o Assess how pothole detection speed and performance changes with
different / newer models

o SRResNet
o FaSTGAN
o YOLOv5

o PP-YOLO
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