
1

Efficient Training of Deep Classifiers for Wireless
Source Identification using Test SNR Estimates

Xingchen Wang, Student Member, IEEE, Shengtai Ju, Student Member, IEEE, Xiwen Zhang, Student
Member, IEEE, Sharan Ramjee, Student Member, IEEE, and Aly El Gamal, Senior Member, IEEE

Abstract—We investigate the potential of training time reduc-
tion for deep learning algorithms that process received wireless
signals, if an accurate test Signal to Noise Ratio (SNR) estimate
is available. Our focus is on two tasks that facilitate source
identification: 1- Identifying the modulation type, 2- Identifying
the wireless technology and channel index in the 2.4 GHZ
ISM band. For benchmarking, we rely on a fast growing
recent literature on testing deep learning algorithms against two
well-known synthetic datasets. We first demonstrate that using
training data corresponding only to the test SNR value leads
to dramatic reductions in training time - that can reach up to
35x - while incurring a small loss in average test accuracy, as it
improves the accuracy for low test SNR values. Further, we show
that an erroneous test SNR estimate with a small positive offset is
better for training than another having the same error magnitude
with a negative offset. Secondly, we introduce a greedy training
SNR Boosting algorithm that leads to uniform improvement in
test accuracy across all tested SNR values, while using only a
small subset of training SNR values at each test SNR. Finally,
we discuss, with empirical evidence, the potential of bootstrap
aggregating (Bagging) based on training SNR values to improve
generalization at low test SNR values with scarcity of training
data.

Index Terms—Deep Learning for Wireless, Modulation Clas-
sification, Channel Identification, SNR Boosting, SNR Bagging.

I. INTRODUCTION

W ITH the advent of fifth generation (5G) wireless com-
munication networks, emerging applications like vir-

tual reality (VR) and internet of things (IoT)-related applica-
tions are expected to rely more heavily on an extremely fast
and reliable mobile network that can operate in complex and
dynamic environments. Deep learning can potentially become
an essential part in the design of these networks, because
of the difficulty of modeling these environments as well as
the small time scale of wireless communications that allows
for rapidly collecting large datasets. More specifically, deep
learning algorithms will be strong candidates for autonomous
communication systems that require little computational and
control overhead, and form an intelligent understanding of the
spectrum, which starts with the basic task of identifying the
source(s) of transmission for a given received wireless signal.

The problem of recognizing the modulation type of a
received signal is important for interference source identifi-
cation, and for reducing control overhead by enabling fre-
quent modulation and coding scheme (MCS) adaptation to

X. Wang, S. Ju, X. Zhang, S. Ramjee, and A. El Gamal are with the
Department of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN, USA. Email: {wang2930, ju10, zhan2977, sramjee,
elgamala}@purdue.edu.

the changing environment. In [1] and [2], a synthetic dataset
based on the GNU Radio software package was introduced to
initiate the investigation of deep neural network architectures
and optimization algorithms that are suitable for the task of
recognizing one out of ten modulation types, including both
analog and digital types. In [3], multiple architectures were
presented that deliver state of the art accuracy results for
this synthetic dataset. In [4], the problem of designing fast
training algorithms for these architectures was considered, and
promising results were presented using candidate algorithms
that rely on training with only a subset of the samples available
in each input vector (subsampling) as well as a subset of
vectors that correspond to only a single value for the signal
to noise ratio (SNR).

In [5], the problem of channel identification in the 2.4 GHZ
ISM band was considered through a synthetic dataset that
the authors introduced. The dataset contains received signals
corresponding to 15 different channels of WiFi, Bluetooth,
and ZigBee. Efficient training algorithms for this problem
were investigated in [6] through training with only a subset
of frequency bands, a subset of input vector samples, and a
subset of SNR values.

In this work, we demonstrate the feasibility of effective and
fast training of deep classifiers for wireless source identifica-
tion tasks, in presence of a good test SNR estimate. We use
the aforementioned datasets for modulation classification and
channel identification to validate the proposed methods and
obtained insights. We first start by improving the preliminary
results on training SNR selection of [4] and [6], obtained
through training with only the test SNR value. We then show
that if we can only estimate a test SNR range, it is better
to train with optimistic estimates. We then present a training
SNR Boosting algorithm that identifies a small set of training
SNR values that lead to the best accuracy for every given
test SNR. Not only does it lead to faster training, but the
identified training set through SNR Boosting is shown to
deliver superior performance to training with all available
data for both considered tasks. We finalize our discussion
of training algorithms that are based on SNR selection, by
investigating the potential of Bagging (see e.g., [7, Chapter
7]).

II. PROBLEM SETUP

A. Problem Description and Considered Training Algorithms

Given an incoming received signal, provided through one of
the datasets described in Section II-B, our goal is to maintain

ar
X

iv
:1

91
2.

11
89

6v
1 

 [
cs

.L
G

] 
 2

6 
D

ec
 2

01
9



2

TABLE I: The considered 3 architectures for modulation classification. The convolutional layers column indicates the number
of feature maps and kernel size of each layer. The dense layers column indicates the input and output size of each layer. The
LSTM column indicates the number of recurrent cells. The last column indicates the number of residual stacks.

Architecture Activation Functions Convolutional Layers Dense Layers LSTM R-Stacks
CNN ReLU, Softmax 256 3 ∗ 1, 80 3 ∗ 2 10560 ∗ 256, 256 ∗ 10

ResNet ReLU, SeLU, Softmax 128 ∗ 128, 128 ∗ 128, 5
128 ∗ 10

CLDNN ReLU, Softmax 256 3 ∗ 1, 256 3 ∗ 2,
50 ∗ 256, 256 ∗ 10 5080 3 ∗ 1, 80 3 ∗ 1

TABLE II: The considered 3 deep neural network architectures for channel identification.

Architecture Activation Functions Convolutional Layers Dense Layers LSTM R-Stacks
CNN-1 ReLU, Softmax 256 3 ∗ 1, 256 3 ∗ 2 31744 ∗ 1024, 1024 ∗ 15
CNN-2 ReLU, Softmax 256 3 ∗ 1, 256 3 ∗ 1 32768 ∗ 1024, 1024 ∗ 15

ResNet ReLU, Softmax 128 ∗ 128, 128 ∗ 128, 5
128 ∗ 15

CLDNN ReLU, Softmax 256 3 ∗ 1, 256 3 ∗ 2 31744 ∗ 1024 (before LSTM), 256

512 ∗ 256, 256 ∗ 15 (2-dim)

TABLE III: Average accuracy and training times for modulation classification

Architecture Training data type Accuracy (%) Time per epoch (s) Number of epochs Training time (s)

ResNet Single SNR 60.46 1.00 49.65 49.65
All SNR 63.00 27.50 48.00 1320.00

CNN Single SNR 54.41 1.00 108.35 108.35
All SNR 56.48 14.00 208.00 2913.00

CLDNN Single SNR 51.28 1.25 70.80 88.50
All SNR 59.87 39.00 80.00 3120.00

TABLE IV: Average accuracy and training times for channel identification

Architecture Training data type Accuracy (%) Time per epoch (s) Number of epochs Training time (s)

ResNet Single SNR 88.35 1.51 24.14 36.41
All SNR 89.42 19.43 15.00 291.45

CNN Single SNR 90.19 0.98 34.52 33.84
All SNR 89.69 22.02 12.00 264.24

CLDNN Single SNR 89.44 1.23 65.57 80.92
All SNR 89.83 18.56 10.00 185.60

a high classification accuracy while driving the total training
time as low as possible for computational efficiency1. We
consider two classification tasks: 1- Identifying one out of ten
modulation types for the RadioML2016.10b dataset of [1]. 2-
Identifying one out of 15 channels for the channel identifi-
cation dataset of [5]. Both datasets are synthetic and based
on simulating random channel and hardware imperfections,
that are difficult to model in closed form, and the descriptions
of the random generators of these imperfections are available
in [1] and [5]. In the sequel, we consider the following
three training scenarios: (a) Training with all available data,
which represents our initial benchmark. (b) Training only

1Code for modulation classification was approved for publication at
IEEE Code Ocean at https://codeocean.com/capsule/7188167/tree/v1. Code
for channel identification was approved for publication at IEEE Code Ocean at
https://codeocean.com/capsule/0a545fca-d0c3-410b-bc37-f253e585ac39/tree

with data of the same SNR value as a test SNR estimate, as
described in Section IV-A. (c) Training with a selected subset
of available data corresponding to specific SNR values, which
are determind through an SNR Boosting algorithm, detailed
in Section IV-B.

B. Datasets

To demonstrate the universality of the presented results, we
use two datasets on tasks that are strongly related to wireless
source identification, a modulation classification dataset and a
channel identification dataset. We use the RadioML2016.10b
dataset introduced in [1] and [2] for the task of modulation
classification. Ten widely used modulation types are chosen;
eight digital and two analog modulation types. These consist
of BPSK, QPSK, 8PSK, QAM16, QAM64, BFSK, CPFSK,



3

Fig. 1: Single SNR Selection with Considered Architectures
for Modulation Classification (ResNet is used for "Training
with Whole Dataset")

Fig. 2: Single SNR Selection with Considered Architectures
for Channel Identification (CNN is used for "Training with
Whole Dataset")

Fig. 3: SNR Sensitivity with ResNet for Modulation Classifi-
cation

Fig. 4: SNR Sensitivity with CNN for Channel Identification

and PAM4 for digital modulations, and WB-FM, and AM-
DSB for analog modulations. The dataset consists of 160,000
sample vectors; each consisting of 128 2-dimensional (real
and imaginary I/Q format) samples, taken every 1 µs from a
baseband received signal.

The considered channel identification dataset is introduced
in [5], and contains in total 225,225 sample vectors for 15
classes. There are 10 Bluetooth channels with center frequen-
cies in the range 2422-2431 MHz, spaced every 1 MHz, and
each channel has a width of 1 MHz. Also, there are three
WiFi channels with center frequencies of 2422, 2427, and
2432 MHz, and each has a width of 20 MHz. Finally, there
are two Zigbee channels with center frequencies 2425 and
2430 MHz, and each has a width of 2 MHz. For the WiFi
frames, the Physical Layer Mode is varied between CCK,
PBCC, and OFDM. For the Bluetooth frames, the Transport
Mode is varied between ACL, SCO, and eSCO. For the Zigbee
frames, the ACK-frame is used. Each sample vector consists
of 128 I/Q samples, corresponding to 12.8 µs (a sample is
taken every 0.1 µs). The I/Q samples of each sample vector
are also transformed into the frequency domain by using the
Fast Fourier Transform (FFT), as we believe that it facilitates
identifying the channel through the occupied frequency range.

Finally, both datasets are split equally among all considered
classes, and are also split equally among all SNR values in the
considered range with a minimum of -20 dB and a maximum
of 18 dB for modulation classification and 20 dB for channel

identification, and a step size of 2 dB.

III. DEEP NEURAL NETWORK ALGORITHMS

We consider three different architecture types: A Convolu-
tional Neural Network (CNN), Residual Network (ResNet),
and a Convolutional Long Short-term Deep Neural Network
(CLDNN). We clarify below the design details of each archi-
tecture, and a summary is provided in Table I and Table II.

A. Modulation Classification

The CNN consists of two convolutional layers with the first
layer having 256 kernels; each of size of 3 × 1. The second
convolutional layer has 80 3×2 kernels. The two dense layers
have sizes of 1024×256 and 256×10, respectively. Activation
functions used in the CNN are ReLU for hidden layers and
Softmax for the output layer. The ResNet architecture used for
single SNR selection contains 3 residual stacks. Each residual
stack consists of the following layers: a 1-D convolutional
layer with kernel size 1 and linear activation function followed
by a batch normalization layer; after batch normalization, two
residual units are added, and finally, a max pooling layer is
added. The residual unit contains two convolutional layers with
kernel size 5, each followed by a batch normalization layer.
The first convolutional layer in the residual unit uses ReLU
as activation function while the second uses a linear activation
function. A shortcut unit is then added for the residual unit



4

connecting the beginning and the end. The ResNet architecture
used in our greedy boosting algorithm has 5 residual stacks
with the exact same setup just mentioned. The dimension of
the first dense layer for our 3-stack ResNet is 512 and the
dimension of the first dense layer for our 5-stack ResNet is
128. The ResNet dense layers have Scaled Exponential Linear
Unit (SeLU) activation. For the CLDNN, the LSTM layer
follows all convolutional layers, and precedes all dense layers.

B. Channel Identification

For the CNN used for single SNR selection, a dropout layer
is added after the second convolutional layer. Then we reshape
the output of the dropout layer and feed it through a fully
connected layer followed by ReLU and another dropout layer.
For the network used for SNR boosting, batch normalization is
applied after each convolutional layer. The dropout layer after
the second convolution layer is removed in SNR boosting.
The CNN architectures used for single SNR selection are
labeled CNN-1 and CNN-2 in Table II, respectively. The
ResNet used for channel identification has 5 residual stacks.
The residual stacks are similar to those used for modulation
classification, but both convolutional layers in a residual unit
have ReLU activations. For the CLDNN, one dense layer
succeeds convolutional layers and precedes the LSTM layer as
illustrated in Table II, and the other two dense layers follow
the LSTM layer.

C. Programming Environment and Hyperparameters

We used a GPU server with a Tesla P100 GPU and 16
GB of memory. For modulation classification, we used the
same hyperparameters and optimization algorithms as in [4].
For channel identification, we used a dropout rate of 0.6 for
single SNR selection, and 0.8088 for greedy SNR boosting.
All other parameters are kept the same as [6].

IV. RESULTS

A. Single SNR selection

1) Modulation Classification: When training with a perfect
test SNR estimate, we observe from the results in Figure 1 that
the accuracy is typically higher than using the whole training
set at low SNR values, and lower at high SNR values. The
average accuracy suffers from a slight drop as illustrated in
Table III. The intuition behind the improved performance at
low SNR values is that when training with the whole dataset,
the network focuses on patterns that are not relevant to the
noisy regime corresponding to the test SNR.

As we are using only 5% of the training dataset, the training
time is reduced by 25-35x, as can be observed from Table III.
We observe from Figure 1 that when using a larger portion of
12.5% of the training dataset, but uniformly distributed across
all SNR values, the test accuracy is uniformly (at all test SNR
values) lower than the single SNR selection strategy.

Since the ResNet architecture was found to deliver the
best performance for modulation classification, we restrict our
attention to it for the remaining experiments on this task. In
order to determine the training SNR selection strategy when

the test SNR estimate can only specify a range of values, we
tested the impact of training with an SNR that is lower/upper
than the true value by 2 and 4 dB. As shown in Figure 3, the
optimistic estimate is almost always better to train with.

2) Channel Identification: Identical observations to the
modulation classification task hold, with the following ex-
ceptions: 1- Starting from test SNR of 0 dB, we obtain
almost perfect classification accuracy, and hence, the stated
observations are evident only at lower test SNR values. 2-
The CNN architecture outperforms the considered others,
and hence, aside from single SNR selection using perfect
estimates, we restrict our attention to this architecture. 3- The
penalty incurred due to an inaccurate test SNR estimate used
exclusively for training is not as significant as that of the
modulation classification task.

B. SNR Boosting

Pseudocode for the SNR Boosting Algorithm is shown
below in Algorithm 1. It is important to note that the validation
set, consisting of 20% of the set available for training, is used
only for the selection of the training SNR values, and is later
added back to the training set, when using these values to
construct the training set. As can be seen from Figures 5 and
6, training with the selected SNR set successfully boosts the
model performance. With the selected SNR set from our SNR
boosting algorithm, the obtained accuracy is uniformly higher
than - or very close to - that obtained when using the whole
dataset. Noting that the training time is reduced significantly
as the set typically consists of 3-5 SNR values, out of 20, for
modulation classification, and 1-3 SNR values, out of 21, for
low test SNR channel identification. The SNR values selected
for training are marked in Figures 7 and 8.

Algorithm 1 SNR Boosting Algorithm
Input: Target SNR
Output: Selected Training SNR List

1 while Accuracy increase > 1 and remaining SNR list not empty
do

2 for single SNR in remaining SNR list do
3 append single SNR training data to current set (without

updating current set), train model, and evaluate on
validation set

4 if current accuracy > previous accuracy then
5 appending SNR = single SNR

6 if accuracy improvement then
7 add appending SNR to selected training SNR list
8 remove appending SNR from remaining SNR list
9 set Accuracy increase

V. DISCUSSION: SNR BAGGING

In an attempt to improve generalization performance, we
implemented a bootstrap aggregating (Bagging) algorithm
that relies on training three identical models using indepen-
dently and uniformly sampled training sets from the sets
corresponding to the test SNR value as well as the two



5

Fig. 5: SNR Boosting (ResNet) for Modulation Classification Fig. 6: SNR Boosting with CNN for Channel Identification

Fig. 7: SNR Set Selected by Boosting Algorithm with ResNet
for Modulation Classification

Fig. 8: SNR Set Selected by Boosting Algorithm with CNN
for Channel Identification

Fig. 9: Bagging Algorithm using 5% of the single SNR
training set size with CNN for Channel Identification

Fig. 10: Bagging at -10 dB for Channel Identification

adjacent values. During inference, we hold a vote among the
three models. We compare the test accuracy to that obtained
by single SNR selection using a training set of the same
size. While no noticeable improvement was observed for
modulation classification, we observe from Figures 9 and 10
that noticeable improvements in test accuracy are obtained
for channel identification for smaller training sets and lower
SNR values. Our intuition here for the explanation is that
generalization becomes a dominant factor in determining the
learning performance due to the scarcity of data that carries
clear patterns.

REFERENCES

[1] T. O’Shea and N. West, “Radio machine learning dataset generation with
GNU radio,” in Proc. GNU Radio Conference, 2016.

[2] T. O’Shea, J. Corgan, and T. Clancy, “Convolutional radio modulation
recognition networks,” in Proc. International Conference on Engineering
Applications of Neural Networks, 2016.

[3] X. Liu, D. Yang, and A. El Gamal, “Deep neural network architectures
for modulation classification,” in Proc. Asilomar Conference on Signals,
Systems, and Computers, 2017.

[4] S. Ramjee, S. Ju, D. Yang, X. Liu, A. El Gamal, and Y. C. Eldar, “Fast
deep learning for automatic modulation classification,” IEEE Machine
Learning For Communications Emerging Technologies Initiative, 2018.

[5] M. Schmidt, D. Block, and U. Meier, “Wireless interference identification
with convolutional neural networks,” in Proc. IEEE 15th International
Conference on Industrial Informatics (INDIN). IEEE, 2017, pp. 180–
185. [Online]. Available: https://crawdad.org/owl/interference/20180925/

[6] X. Zhang, T. Seyfi, S. Ju, S. Ramjee, A. El Gamal, and Y. C. Eldar, “Deep
learning for interference identification: Band, training SNR, and sample
selection,” in Proc. IEEE International Workshop on Signal Processing
Advances in Wireless Communications, 2019.

[7] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” MIT Press,
2016.

https://crawdad.org/owl/interference/20180925/

	I Introduction
	II Problem Setup
	II-A Problem Description and Considered Training Algorithms
	II-B Datasets

	III Deep Neural Network Algorithms
	III-A Modulation Classification
	III-B Channel Identification
	III-C Programming Environment and Hyperparameters

	IV Results
	IV-A Single SNR selection
	IV-A1 Modulation Classification
	IV-A2 Channel Identification

	IV-B SNR Boosting

	V Discussion: SNR Bagging
	References

