
Efficient Wrapper Feature Selection using AutoEncoder and 
Model Based Elimination

Journal: IEEE Letters of the Computer Society

Manuscript ID LOCS-2020-05-0016

Manuscript Type: Letters

Keyword:

I.5.2.b Feature evaluation and selection < I.5.2 Design Methodology < 
I.5 Pattern Recognition < I Computing Methodologies, I.2.6.g Machine 
learning < I.2.6 Learning < I.2 Artificial Intelligence < I Computing 
Methodologies

 

For CS Peer Review

For CS Peer Review



1

Efficient Wrapper Feature Selection using
AutoEncoder and Model Based Elimination

Sharan Ramjee, Student Member, IEEE, and Aly El Gamal, Senior Member, IEEE

Abstract—We propose a computationally efficient wrapper feature selection method - called Autoencoder and Model Based
Elimination of features using Relevance and Redundancy scores (AMBER) - that uses a single ranker model along with autoencoders
to perform greedy backward elimination of features, without requiring model retraining. The ranker model is used to prioritize the
removal of features that are not critical to the classification task, while the autoencoders are used to prioritize the elimination of
correlated features. We demonstrate the superior feature selection ability of AMBER on four well known datasets corresponding to
different domain applications via comparing the accuracies with other computationally efficient state of the art feature selection
techniques, and note how a surprisingly small number of features can lead to very high accuracies on some datasets.

Index Terms—AMBER, loss functional, ranker model, breast cancer, relevance and redundancy.

F

1 INTRODUCTION

F EATURE selection is an input pre-processing technique
that eliminates features insignificant to the task at hand.

As examined by [1], it is a powerful tool to alleviate the
curse of dimensionality and reduce training time, as well as
to improve data comprehensibility. For classification prob-
lems, [2] divides feature selection problems into two types:
(a) given a fixed k � d, where d is the total number of
features, find the k features that lead to the least classifica-
tion error and (b) given a maximum expected classification
error, find the smallest possible k along with a minimal set
of features. In this letter, we will be focusing on problems
of type (a). We can formalize this type of feature selection
problems as follows. Given a set (x, y) of input vectors x and
labels y, find a mapping of data x 7→ (x ∗ σ), σ ∈ {0, 1}d,
along with a function f to minimize

τ(f, σ) =

∫
Ly(f(x ∗ σ))dP (x, y), (1)

subject to ‖σ‖0 = k, where the distribution P (x, y) is
unknown, and can be inferred only from the training set,
x ∗ σ = (x1σ1, . . . , xdσd) is an element-wise product, and
Ly(·) is the loss functional.

Feature selection algorithms have three types: Filter,
Wrapper, and Embedded methods. Filters rely on intrinsic
data characteristics while wrappers measure the learning
performance of a classifier to rank feature importance. [3]
asserts that although filters are more computationally effi-
cient than wrappers, the features selected by filters are not
as good. Embedded methods incorporate feature selection
into the underlying model to reconcile the efficiency ad-
vantage of filters with the learning algorithm interaction
advantage of wrappers. However, embedded methods are
model dependent because they perform feature selection
during the training of the learning algorithm. This serves as
a motivation for the use of wrapper methods that are com-

• S. Ramjee and A. El Gamal are with the Department of Electrical and
Computer Engineering, Purdue University, West Lafayette, IN, USA.
Email: {sramjee, elgamala}@purdue.edu.

putationally efficient and not model dependent. Wrapper
methods can be further divided based on the search type for
candidate features. We focus on Heuristic Search Wrappers
that iteratively eliminate one feature at each iteration due to
their computational efficiency advantages [4].

1.1 Motivation

1.1.1 Relevance and Redundancy

Our driving intuition is that irrelevant features are insignif-
icant because their direct removal does not result in a
drop in classification accuracy, while redundant features
are insignificant because they are linearly or non-linearly
dependent on other features and can be inferred - or ap-
proximated - from them. As detailed by [5], one does not
necessarily imply the other. Filter methods are known to
be better at identifying redundant features while wrapper
methods are better at identifying irrelevant features, and
hence, there is a need to incorporate a filter based technique
to identify redundant features into wrapper methods, which
we address using autoencoders.

1.1.2 Training the Classifier only once

Wrappers often have high computational complexity be-
cause the classifier needs to be trained for every considered
feature set. For greedy backward elimination wrappers, like
the Recursive Feature Elimination (RFE) method [6], the
removal of k out of d features requires training the classifier
for

∑k
i=1(d − i + 1) times, which is burdensome when d is

large. Also, the saliency of the features selected is governed
by how good the classifier that ranks the features is, and as
such, we need to use state-of-the-art classifiers for ranking
the features. These models often require large training times,
which implies a trade-off between speed and quality of
selected features. We address this issue by training the
feature ranker model only once and relying on simulations
of the loss functional that exploit a transferability property
of neural networks.

Page 1 of 4

For CS Peer Review

For CS Peer Review



2

2 STATE OF THE ART

We describe top-notch efficient feature selection methods
that we will be comparing our proposed method to. With
the exception of FQI, the implementations of these methods
can be found in the scikit-feature package created by [3].

Fisher Score encourages selection of features that have
similar values within the same class and distinct values
across different classes. A precise definition is in [7].

Conditional Mutual Information Maximization
(CMIM) is proposed in [8], [9], and iteratively selects
features while maximizing the empirical Shannon mutual
information function between the feature being selected
and class labels, given already selected features.

Efficient and Robust Feature Selection (RFS) is an effi-
cient feature selection method proposed by [10] that exploits
the noise robustness property of the joint `2,1-norm loss,
by applying the `2,1-norm minimization on both the loss
and its associated regularization function. The value of the
regularization coefficient for our experiments was chosen by
performing RFS on a wide range of values and picking the
value that led to the highest accuracy on the validation set.

Feature Quality Index (FQI) utilizes the output sensi-
tivity of a learning model to changes in the input, to rank
features [11]. Unlike the proposed method, FQI uses the
Mean Square Error (MSE) instead of the model’s loss, and
uses a one-shot feature ranking without iterations.

3 AMBER
3.1 Sensitivity of weights to features
Following a gradient-based optimization of a deep neural
network, the weights connected to the neurons in the input
layer that correspond to more salient features tend to have
larger magnitudes [12]. Similar to FQI, we measure the rele-
vance of each feature by setting the value of the correspond-
ing neuron to 0. Hence, all the weights from that neuron to
the next layer will not have an impact on the output. Since
more salient features possess weights of higher magnitude,
these weights influence the output to a greater extent and
setting their values to 0 in the input will result in a greater
loss in the output layer. We will refer to the loss value of
this ranker model as a feature’s Relevance Score. We note
that this is the basis of the Weight Based Analysis feature
selection methods outlined by [13]. We further note that
we normalize the training set before training by setting the
mean of each feature to 0 and the variance to 1, so that our
simulation of feature removal is effectively setting the feature
to its mean value for all training examples.

3.2 Autoencoders Reveal Non-Linear Correlations
Weights connected to a feature can possess high magni-
tudes, even when this feature is redundant in presence of
other features. We experimented with methods like PCA
and correlation coefficients [14], but these methods reveal
only linear correlations in data. Autoencoders, however,
reveal non-linear correlations [15]. To eliminate one feature
from a set of k features, we train the autoencoder with one
dense hidden layer consisting of k − 1 neurons using the
normalized training set. We note that this hidden layer can
also be convolutional, LSTM, or of other types depending on

the data type. To evaluate a feature, we set its corresponding
values in the training set to 0 and pass the set into the
autoencoder. We then take the Mean Squared Error (MSE)
between the output and the original input, and perform
this for each of the k features separately. Lower MSE values
indicate higher likelihood for redundancy. We refer to this
MSE as a feature’s Redundancy Score.

Algorithm 1 AMBER Algorithm for Feature Selection
Inputs: k: Number of features to be eliminated; trainSet:
Training Dataset;
Outputs: featList: List of k eliminated features

function AMBER(k, trainSet)
Train state of the art RM using trainSet
Initialize featList to empty list
for i = 1 to k do

Set rmSet as trainSet with all features in featList set to 0
Set autoTrainSet as trainSet where all features in featList are
removed
Train autoencoder with one hidden layer containing d − i
units using autoTrainSet
for j in d− i+ 1 features not in featList do

Record loss of RM when rmSet is evaluated after setting
feature j to 0
Set cTrainSet as autoTrainset where feature j is set to 0
Record MSE of autoTrainSet and output of autoencoder
when cTrainSet is evaluated

End for
Normalize RM losses and MSEs and add corresponding
values
Sort and add lowest scoring feature to featList
End for
return (featList)

3.3 Loss functional simulations to prevent retraining
To eliminate k out of d features, we first train a state-of-
the-art neural network model for the considered dataset,
which we call the Ranker Model (RM). We then simulate the
loss functional by setting the input for each of the d features
in all the examples of the training set to 0 one at a time
in a round-robin fashion to obtain a list of d Relevance
Scores. Additionally, we train the autoencoder and pass the
similarly modified training sets through the autoencoder to
obtain d Redundancy Scores. We then divide the Relevance
and Redundancy Scores by their corresponding ranges so
that they both contribute equally to the final decision and
add them to obtain a Saliency Score. The feature with the
lowest Saliency Score is eliminated. In the context of the
RM, elimination means that the feature is permanently set
to 0 for all training examples in further iterations. In the
context of the autoencoder, elimination means that that fea-
ture is permanently removed. This entire process, without
retraining the RM, is done iteratively k times. Note that
each Saliency Score is indeed obtained through simulations
of the loss functionals - of both the RM and autoencoder - by
evaluating at functions insensitive to the considered feature.
The pseudocode for AMBER is described in Algorithm 1. We
note that it is straightforward to modify AMBER for select-
ing minimal feature sets for a given accuracy guarantee.

Page 2 of 4

For CS Peer Review

For CS Peer Review



3

4 RESULTS

4.1 Experimental Setup
We used three Nvidia Tesla P100 GPUs, each with 16 GB
of memory, and Keras with a TensorFlow backend. With
the exception of the RadioML2016.10b dataset for which we
used all three GPUs, we only used one GPU for training. The
experiments were performed three times and the average
accuracies were plotted at each feature count in Fig. 1. 1.

4.2 Datasets and Classifiers
We consider different application domains to demonstrate
AMBER’s versatility. The final models, trained on the se-
lected feature set, are common across all the feature selection
methods that are compared and are trained until early stop-
ping is achieved with a patience value of 5 to ensure that the
comparisons are fair. For all classifier models, the softmax
activation function is applied to the output layer with cross-
entropy loss, and ReLU is applied to hidden layers, unless
explicitly stated otherwise. All the autoencoders used have
a dense hidden layer. We note that we obtained slightly
better results with a convolutional and LSTM hidden layer
for the MNIST and RadioML2016.10b datasets, respectively.
The test split used for the Reuters and the Wisconsin Breast
Cancer datasets is 0.2 while the test split used for the
RadioML2016.10b dataset is 0.5. Some of the plots in Fig.
1 were jagged when feature counts in decrements of 1 were
plotted and thus, we plotted them in larger feature count
decrements. Finally, to demonstrate that the final model
does not necessarily have to be the same as the RM used
by AMBER, we used different models as the final model
and the RM for the MNIST and RadioML2016.10b datasets.

MNIST is a handwritten digit recognition dataset con-
sisting of 70000 28x28 grayscale images with 10 classes;
10000 of which represent the test set. The total number of
features is 784. The RM is a CNN consisting of 2 convo-
lutional layers, a max pooling layer, and 2 dense layers, in
that order. The convolutional layers have 32 and 64 filters,
in order of depth, with kernel sizes of (3x3) for both layers.
The max pooling layer has a (2x2) pool and the dense layers
have 128 and 10 (output layer) neurons. The final model
used is an MLP model consisting of 3 fully connected layers
with 512, 512, and 10 (output layer) neurons. Each of the
hidden layers is followed by a 0.2 rate dropout layer.

Reuters is a text dataset consisting of 11228 newswires
with 46 classes, corresponding to different topics. Each wire
is encoded as a sequence of word indices, where the index
corresponds to a word’s frequency in the dataset. For our
demonstration, the 1000 most frequent words are used. The
ranker and final models are the same MLP model consisting
of 2 fully connected layers with 512 and 46 neurons.

Wisconsin Breast Cancer contains characteristics of cell
nuclei, measured from an image of Fine Needle Aspirates
(FNAs) of breast mass [16]. There are 569 examples with
30 features and 2 classes: malignant and benign. The ranker
and final models are the same MLP having 4 fully connected
layers with 16, 8, 6, and 1 (output layer) neurons, in order
of depth. Sigmoid activation is used for the output layer.

1. The source code for AMBER, links to the datasets considered, and
the error bars for the comparison plots are available at https://github.
com/alyelgamal/AMBER

(a)

(b)

(c)

(d)

Fig. 1: Accuracy vs Feature Count plots for the final mod-
els trained with the selected features for the (a) MNIST,
(b) Reuters, (c) Wisconsin Breast Cancer, and (d) Ra-
dioML2016.10b datasets.

Page 3 of 4

For CS Peer Review

For CS Peer Review

https://github.com/alyelgamal/AMBER
https://github.com/alyelgamal/AMBER


4

TABLE 1: Accuracy Comparisons

Method Avg. accuracy with top 10% features (%)

MNIST Reuters Cancer RadioML

Fisher 88.37 51.21 92.40 73.42
CMIM 96.38 71.04 90.64 70.22
RFS 89.46 77.11 91.81 75.85
FQI 95.49 68.20 76.32 83.57
AMBER 97.21 77.55 96.78 95.15
- Relevance 93.29 73.45 89.65 89.54
- Retraining 97.21 78.11 97.37 97.49

TABLE 2: Time needed to rank all features in Seconds.

Method MNIST Reuters Cancer RadioML
AMBER 10552.24 21710.78 40.04 26417.53
- Retraining 24202.66 29005.08 739.01 42533.27

RadioML2016.10b consists of received wireless signal
samples with 1200000 128-sample complex time-domain
vectors and 10 classes, representing different modulation
types [17]. It has 20 Signal to Noise Ratios (SNR), but we
only show the results of the 18 dB data for better illustration.
Each of the 128 samples consists of real and imaginary
parts and thus, the input dimensions are 2x128, and the
total number of features is 256. This dataset has the unique
property that only pairs of features (belonging to the same
sample) can be eliminated. AMBER, like FQI, is powerful
in such situations as the pairs of features can be set to 0
to evaluate their collective rank. The other feature selection
methods fail in this case because they account for feature
interactions within the pairs of features as well, which is one
reason for why AMBER outperforms them as it does not. For
the other methods, to eliminate pairs of features belonging
to the same sample, we simply added the scores belonging
to the two features to obtain a single score for each sample.
The Ranker Model used here is a CLDNN while the final
model used is a ResNet, both of which are described in [18].

4.3 Classification Accuracies

The final models’ classification accuracy plots using the
selected features can be observed in Fig. 1. We observe the
impressive performance delivered by AMBER that generally
outperforms that of all four considered methods, particu-
larly when the number of selected features becomes very
low (about 99% average accuracy with 4 out of 30 features
for the Cancer dataset and about 95% average accuracy
with 16 out of 128 samples for the RadioML dataset). The
comparisons of the accuracies of the final models using
the top 10% of features are given in Table 1. The results
in the last two rows refer to using a version of AMBER
without the autoencoder’s redundancy score, and another
version of AMBER where the ranker model is retrained in
every iteration, respectively. Note from the depicted results
(purple curves in the figure) how solely relying on the RM
significantly reduces AMBER’s performance, which vali-
dates our intuition about the benefit of using the Autoen-
coder to capture correlations to reduce the generalization
error. Further, we observe how negligible gains are achieved
when retraining the RM in every iteration, that comes at a
significant computational cost, as demonstrated in Table 2,

which validates our intuition about simulating the loss
functional without retraining for computational efficiency
while maintaining good performance.

5 CONCLUSION

We presented a new wrapper feature selection method that
relies on a task-based model and autoencoders to evaluate
candidate combinations of features. The proposed method
enjoys computational efficiency, as it avoids retraining the
model in every iteration, unlike existing wrapper methods.
We demonstrated the obtained superior performance in four
different domain applications, and specially highlighted the
added value of including autoencoders and negligible loss
due to reusing the model without retraining.

REFERENCES

[1] L. Yu and H. Liu, “Feature selection for high-dimensional data:
A fast correlation-based filter solution,” in Proceedings of the 20th
international conference on machine learning (ICML-03), 2003, pp.
856–863.

[2] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and
V. Vapnik, “Feature selection for SVMs,” in Advances in neural
information processing systems, 2001, pp. 668–674.

[3] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino,
J. Tang, and H. Liu, “Feature selection,” ACM Computing
Surveys, vol. 50, no. 6, pp. 1–45, Dec 2017. [Online]. Available:
http://dx.doi.org/10.1145/3136625

[4] Z. M. Hira and D. F. Gillies, “A review of feature selection and
feature extraction methods applied on microarray data,” Advances
in bioinformatics, vol. 2015, 2015.

[5] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extrac-
tion: foundations and applications. Springer, 2008, vol. 207.

[6] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection
for cancer classification using support vector machines,” Machine
learning, vol. 46, no. 1-3, pp. 389–422, 2002.

[7] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[8] M. Vidal-Naquet and S. Ullman, “Object recognition with infor-
mative features and linear classification.” in ICCV, vol. 3, 2003, p.
281.

[9] F. Fleuret, “Fast binary feature selection with conditional mutual
information,” Journal of Machine learning research, vol. 5, no. Nov,
pp. 1531–1555, 2004.

[10] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust
feature selection via joint l2,1-norms minimization,” in Advances
in neural information processing systems, 2010, pp. 1813–1821.

[11] K. De Rajat, N. R. Pal, and S. K. Pal, “Feature analysis: Neural
network and fuzzy set theoretic approaches,” Pattern Recognition,
vol. 30, no. 10, pp. 1579–1590, 1997.

[12] K. W. Bauer Jr, S. G. Alsing, and K. A. Greene, “Feature screening
using signal-to-noise ratios,” Neurocomputing, vol. 31, no. 1-4, pp.
29–44, 2000.

[13] T. N. Lal, O. Chapelle, J. Weston, and A. Elisseeff, “Embedded
methods,” in Feature extraction. Springer, 2006, pp. 137–165.

[14] D. M. Witten, R. Tibshirani, and T. Hastie, “A penalized matrix
decomposition, with applications to sparse principal components
and canonical correlation analysis,” Biostatistics, vol. 10, no. 3, pp.
515–534, 2009.

[15] M. F. Balın, A. Abid, and J. Zou, “Concrete autoencoders: Dif-
ferentiable feature selection and reconstruction,” in International
Conference on Machine Learning, 2019, pp. 444–453.

[16] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear
feature extraction for breast tumor diagnosis,” in Biomedical image
processing and biomedical visualization, vol. 1905. International
Society for Optics and Photonics, 1993, pp. 861–871.

[17] T. O’Shea, J. Corgan, and T. Clancy, “Convolutional radio mod-
ulation recognition networks,” in Proc. International conference on
engineering applications of neural networks, 2016.

[18] S. Ramjee, S. Ju, D. Yang, X. Liu, A. E. Gamal, and Y. C. Eldar, “Fast
deep learning for automatic modulation classification,” IEEE Ma-
chine Learning for Communications Emerging Technologies Initiatives,
arXiv:1901.05850, 2019.

Page 4 of 4

For CS Peer Review

For CS Peer Review

http://dx.doi.org/10.1145/3136625

