
AdaLA: Adapting Gradient Estimation by Looking Ahead

Sharan Ramjee
sramjee@stanford.edu

Department of Computer Science
Stanford University

Abstract

First-order gradient methods used for the optimization of neural networks broadly fall into two
categories: stochastic gradient descent (SGD) methods and adaptive learning rate methods. While
SGD methods lead to better generalization performance on large datasets, adaptive learning rate
methods lead to faster convergence in early training phases. In order to address these issues, Zhuang
et al.(1) proposed the AdaBelief optimizer, which adapts the step sizes through the use of an
Exponential Moving Average (EMA) of the gradients to quantify the "belief" in the step size to
be taken. AdaBelief, however, assumes a smooth parameter space that does not change much in
terms of the gradients, which, in turn, justifies the use of the EMA of the gradients to "predict"
the next gradients. However, this assumption does not always hold in complex parameter spaces
as the gradients could drastically change at every iteration of the optimizer, in which case, the
EMA of the gradients is not a good approximation of the next gradients. In order to address this
issue, this paper proposes AdaLA: Adaptive Gradient Estimation by Looking Ahead, which is
simple modification to AdaBelief that looks ahead to better adapt step sizes. Through extensive
experiments, this paper demonstrates that AdaLA leads to better convergence across a variety of
Deep Learning tasks, datasets, and models. The implementation of AdaLA can be found on GitHub:
https://github.com/sharanramjee/adala-optimizer.

1 Introduction
Given the enormous dimensionality of the parameter space, state-of-the-art neural networks are typically trained with
first-order gradient methods (2), which can be categorized into two types of methods: stochastic gradient descent (SGD)
methods (3; 4; 5; 6) and adaptive learning rate methods (7; 8; 9; 10). While SGD methods lead to better generalization
performance on large datasets, adaptive learning rate methods lead to faster convergence in early training phases (11; 12).
Furthermore, adaptive learning rate methods have been empirically found to be unstable when training Generative
Adversarial Networks (GANs) (13).

In order to address the above issues, Zhuang et al.(1) proposed the AdaBelief optimizer, which is a modification to
Adam. In contrast to Adam, AdaBelief views mt, which is the exponential moving average (EMA) of the gradients
gt as the prediction of the next gradients. Intuitively, if gt deviates significantly from mt, then a small step is taken
as we have a weak belief in gt. However, if gt is close to the prediction mt, then a large step is taken as we have a
strong belief in gt. Here, vt = g2t and st = (gt −mt)

2 are the EMAs of g2t and (gt −mt)
2, respectively. As observed

in the next section, while mt is divided by
√
vt in Adam, it is divided by

√
st in AdaBelief, where 1√

st
is viewed as

the "belief" in the observation. AdaBelief is a variant of Adam that modifies it without extra parameters and had three
advantages as examined by Zhuang et al.(1): (1) Fast convergence as in other adaptive learning rate methods, (2) Good
generalization as in SGD methods, and (3) Training stability in complex settings such as GANs.

AdaBelief assumes a smooth parameter space that does not change much in terms of the gradients. As such, the EMA
of the gradient mt can be used to "predict" the next gradient gt. However, this assumption does not always hold in
complex parameter spaces as the gradients could drastically change at every iteration of the optimizer, in which case,
mt is not a good approximation of the gradient. In order to address this issue, this paper proposes AdaLA: Adaptive
Gradient Estimation by Looking Ahead.

2 Method
Similar to AdaBelief, AdaLA makes a simple modification to Adam that does not make use of any extra parameters.
AdaLA takes a step in the direction of steepest descent (similar to Adam), computes the gradient at the next step, and
uses it to adapt the learning rate, similar to the way AdaBelief uses the EMA of the gradient instead of the actual
gradient at the next step. The pseudo-code of Adam, AdaBelief, and AdaLA are given below (modifications to Adam
highlighted in blue). By the convention used in (10), the notations are as follows:

• f(θ) ∈ R, θ ∈ Rd: f is the loss function to minimize, θ is the parameter in Rd

•
∏
F,M (y) = argminx∈F ||M1/2(x− y)||: projection of y onto a convex feasible set F

• gt: the gradient at step t

• mt: exponential moving average (EMA) of gt

• vt, st: vt is the EMA of g2t , st is the EMA of error in the predicted gradient

• α, ε: α is the learning rate, default is 10−3; ε is a small number, typically set as 10−8

• β1, β2: smoothing parameters, typical values are β1 = 0.9, β2 = 0.999

• β1t, β2t are the momentum for mt and vt respectively at step t, and typically set as constant (e.g. β1t =
β1, β2t = β2,∀t ∈ {1, 2, ...T}

Algorithm 1: Adam Optimizer
Initialize θ0, m0 ← 0 , v0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t
Bias Correction
m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2

Update
θt ←

∏
F,
√
v̂t

(
θt−1 − αm̂t√

v̂t+ε

)

Algorithm 2: AdaBelief Optimizer
Initialize θ0, m0 ← 0 , s0← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1 + (1− β2)(gt −mt)

2 + ε
Bias Correction
m̂t ← mt

1−βt
1

, ŝt ← st
1−βt

2

Update
θt ←

∏
F,
√
ŝt

(
θt−1 − αm̂t√

ŝt+ε

)
Algorithm 3: AdaLA Optimizer
Initialize θ0, m0 ← 0 , s0← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
gt+1 ← ∇θft+1(θt)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1 + (1− β2)(gt − gt+1)

2 + ε
Bias Correction
m̂t ← mt

1−βt
1

, ŝt ← st
1−βt

2

Update
θt ←

∏
F,
√
ŝt

(
θt−1 − αm̂t√

ŝt+ε

)

3 Experimental Setup
In accordance to the experiments conducted by Zhuang et al.(1), the performance of AdaLA in comparison to the other
optimizers when it comes to optimizing neural networks will be performed on two datasets corresponding to three
sets of tasks, each with their own evaluation models and metric for quantitative evaluation as given in table 1. For
qualitative evaluation, the test accuracy curves, test perplexity curves, and sample image generations will be reported
for the image classification, language modeling, and image generation tasks, respectively. For quantitative evaluation,
the best test accuracy, best test perplexity, and best Frechet Inception Distance (FID) (14) will be reported for the image
classification, language modeling tasks, and image generation tasks, respectively.

2

Table 1: Experimental Setup

Task Dataset Evaluation Models Evaluation Metric
Image Classification CIFAR-10 VGG11, ResNet34, DenseNet121 Test set accuracy
Language Modeling Penn TreeBank 1-layer, 2-layer, 3-layer LSTMs Test set perplexity
Image Generation CIFAR-10 WGAN, WGAN-GP Frechet Inception Distance

4 State-of-the-Art Optimizers
The performance of AdaLA, in accordance to the experimental setup outlined in the next section, will be compared to
the following state-of-the-art optimizers: AdaBelief (1), SGD (5), AdaBound (15), Yogi (16), Adam (10), MSVAG
(17), RAdam (18), AdamW (19), and Fromage (20).

Extensive hyperparameter tuning was performed for each of the state-of-the-art optimizers across the experiments. The
hyperparameters for AdaLA were chosen to be the same as those of Adam as they led to better convergence empirically.
Furthermore, in order to improve convergence near the minima, a weight decay of 5× 10−4 was used across all the
optimizers. In accordance to the tuning performed by Zhuang et al.(1), the following hyperparameters were chosen for
the image classification and language modeling tasks:

AdaLA, AdaBelief, Yogi, Adam, RAdam, AdamW The default parameters of Adam were used: β1 = 0.9, β2 =
0.999, ε = 10−8, α = 10−3.

SGD and Fromage Learning rates of 0.1 and 0.01 were used for SGD and Fromage, respectively. Additionally, a
momentum of 0.9, which is the default for networks such as ResNet (21) and DenseNet (22) was used. The rest of the
hyperparameters were set to the Adam defaults: β1 = 0.9, β2 = 0.999, ε = 0.001.

AdaBound Learning rates of 0.1 and 0.001 were used for the initial and final learning rates, respectively. The rest of
the hyperparameters were set to the Adam defaults: β1 = 0.9, β2 = 0.999, γ = 0.001.

MSVAG A learning rate of 0.1 was used. The rest of the hyperparameters were set to the Adam defaults: β1 = 0.9,
β2 = 0.999, ε = 0.001.

For the image generation task, a learning rate of 2× 10−4 was chosen for all the optimizers. Furthermore, in accordance
to the improved empirical results obtained by Zhuang et al.(1) using the following hyperparameters for AdaBelief, the
same hyperparameters were set for AdaLA during the WGAN and WGAN-GP training: β1 = 0.5 and ε = 10−12.

5 Results
In accordance to the analysis done by Zhuang et al.(1) across the three tasks, for each optimizer, a search is performed for
the optimal hyperparameters. The mean and standard deviation of the test set accuracy (under optimal hyperparameters)
for three runs with random initialization are then reported.

5.1 Image Classification

The image generation performance of AdaLA in comparison to the other state-of-the-art optimizers is compared on the
CIFAR-10 dataset (23) using the VGG11 (24), ResNet34 (21), and DenseNet121 (22) models. The qualitative results
are given in Fig. 1 and the quantitative results are given in Table. 2.

Figure 1: Test accuracy ([µ± σ]) on the CIFAR-10 dataset. Visualization code modified from AdaBound (15).

3

Table 2: Best test accuracy (higher is better) on the CIFAR-10 dataset

Optimizer VGG11 ResNet34 DenseNet121
Fromage 89.77% 94.51% 95.10%
AdamW 89.39% 94.59% 94.55%
RAdam 89.30% 94.33% 94.81%
MSVAG 90.24% 94.44% 94.81%
Adam 88.40% 93.02% 93.35%
Yogi 90.67% 94.71% 94.76%
AdaBound 90.62% 94.85% 94.58%
SGD 90.11% 94.64% 94.50%
AdaBelief 91.41% 95.44% 95.51%
AdaLA 91.66% 95.64% 95.63%

5.2 Language Modeling

The language modeling performance of AdaLA in comparison to the other state-of-the-art optimizers is compared on
the Penn TreeBank dataset (25) using the 1-layer, 2-layer, and 3-layer LSTM models (26). The qualitative results are
given in Fig. 2 and the quantitative results are given in Table. 3.

Figure 2: Test perplexity ([µ± σ]) on the Penn TreeBank dataset.

Table 3: Best test perplexity (lower is better) on the Penn TreeBank dataset

Optimizer 1-layer LSTM 2-layer LSTM 3-layer LSTM
Fromage 84.07 66.43 63.04
AdamW 87.80 94.86 104.49
RAdam 88.57 90.00 93.12
MSVAG 84.68 68.83 65.03
Adam 84.28 67.27 64.28
Yogi 86.59 71.33 67.51
AdaBound 84.78 67.53 63.58
SGD 85.07 67.42 63.77
AdaBelief 84.21 66.29 61.23
AdaLA 83.24 65.36 60.33

5.3 Image Generation

The image classification performance of AdaLA in comparison to the other state-of-the-art optimizers is compared on
the CIFAR-10 dataset (23) using the Wasserstein-Generative Adversarial Network (WGAN) (27) and the improved
version with gradient penalty (WGAN-GP) (28) with a vanilla CNN generator. Each optimizer is used to train the model
for 100 epochs, generate 64,000 fake images (60,000 real images in CIFAR-10) from noise. The Frechet Inception
Distance (FID) (14) is then computed between the fake and real images in order to quantitatively assess (lower FID is
better) the quality and diversity of the generated images. The qualitative results are given in Figs. 3 and 4 while the
quantitative results are given in Table. 4.

4

(a) Real samples (b) AdaLA

(c) AdaBelief (d) SGD (e) AdaBound

(f) Yogi (g) Adam (h) MSVAG

(i) RAdam (j) AdamW (k) Fromage

Figure 3: Fake samples from WGAN trained on the CIFAR-10 dataset using different optimizers.

5

(a) Real samples (b) AdaLA

(c) AdaBelief (d) SGD (e) AdaBound

(f) Yogi (g) Adam (h) MSVAG

(i) RAdam (j) AdamW (k) Fromage

Figure 4: Fake samples from WGAN trained on the CIFAR-10 dataset using different optimizers.

6

Table 4: Best FID score (lower is better) on the CIFAR-10 dataset

Optimizer WGAN WGAN-GP
Fromage 110.12 98.53
AdamW 94.96 104.26
RAdam 101.94 84.94
MSVAG 448.43 254.21
Adam 97.49 73.55
Yogi 103.76 88.32
AdaBound 428.57 97.98
SGD 458.67 244.10
AdaBelief 83.13 61.81
AdaLA 81.47 59.84

6 Discussion
For the image classification task, the AdaLA optimizer outperforms the other state-of-the-art optimizers considered
across all the models (VGG11, ResNet34, and DenseNet121) both in terms of the CIFAR-10 test accuracy curves
(qualitative) and best test accuracy (quantitative). For the language modeling task, the AdaLA optimizer outperforms
the other state-of-the-art optimizers considered across all the models (1-layer, 2-layer, and 3-layer LSTMs) both in
terms of the Penn TreeBank test perplexity curves (qualitative) and best test perplexity (quantitative). For the image
generation task, the AdaLA optimizer outperforms the other state-of-the-art optimizers considered across all the models
(WGAN and WGAN-GP) both in terms of the quality of the images generated (qualitative) and best FID score of the
images generated (quantitative). Through these extensive experiments, AdaLA is demonstrated to be task, dataset, and
model-agnostic and can thus be used for any Deep Learning scenario involving gradient descent-based learning.

While the performance gain achieved over AdaBelief is minimal, AdaLA outperforms the other optimizers by a large
margin. The performance gain achieved over AdaBelief can be attributed to the ability of AdaLA to "look ahead" and
adapt the next step size to take during gradient descent. As mentioned earlier, AdaBelief uses the EMA of gradients
to adapt step sizes. While this works well in practice, given the high dimensionality of the parameter space of neural
networks, assuming a smooth parameter space often leads to inaccurate "beliefs" when adapting the step sizes using the
EMA of gradients. As such, "looking ahead" to adapt step sizes is a better strategy that leads to improved performance,
as observed in the previous section.

An important takeaway from the CIFAR-10 test accuracy curves (Fig. 1) and Penn TreeBank test perplexity curves (Fig.
2) is the instability of AdaLA during gradient descent. In particular, the adaptive learning rate methods are known to be
unstable when nearing convergence. While AdaBelief addresses this issue using an EMA of the gradients, this issue is
exacerbated in the case of AdaLA as the step sizes can drastically change at every step of gradient descent based on the
curvature of the parameter space. However, "looking ahead" prevents AdaLA from taking step sizes that could cause
issues such as overshooting or oscillation around the minima and as such, AdaLA leads to improved convergence over
the other optimizers, despite the instability caused by a lack of using an EMA for the gradients.

Finally, it should be noted that AdaLA, while a simple modification over Adam or AdaBelief, leads to longer training
times as a result of "looking ahead". Looking ahead requires taking a step, computing the gradients, reverting the
model parameters to the initial state before taking the step, and then taking an adapted step based on the "looked ahead"
gradients. This essentially means that every step of AdaLA requires an additional step to "look ahead", which leads to
longer training times, especially in the case of large models, where updating the model parameters is expensive.

7 Conclusion and Future Work
This paper presents AdaLA, a first-order gradient algorithm for optimization that adaptively scales the step sizes by
"looking ahead". AdaLA is shown to lead to improved convergence over other state-of-the-art optimizers across a
variety of Deep Learning tasks, datasets, and models while using the same hyperparameters as Adam.

Future work on improving AdaLA can focus on addressing the two drawbacks of AdaLA: instability and increased
training times. The instability of AdaLA could potentially be addressed by incorporating an EMA of gradients (similar
to AdaBelief) when adapting the step sizes. Perhaps a weighted linear or non-linear combination of the "looked ahead"
gradients and EMA gradient estimates will lead to improved stability while retaining AdaLA’s improved convergence.
Finally, the increased training time issue of AdaLA could potentially be addressed by taking k steps forward before
taking a step back as performed by the Lookahead Optimizer (29).

7

References
[1] J. Zhuang, T. Tang, S. Tatikonda, N. Dvornek, Y. Ding, X. Papademetris, and J. S. Duncan, “Adabelief optimizer:

Adapting stepsizes by the belief in observed gradients,” arXiv preprint arXiv:2010.07468, 2020.

[2] Y. Nesterov, “Gradient methods for minimizing composite functions,” Mathematical Programming, vol. 140,
no. 1, pp. 125–161, 2013.

[3] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathematical statistics, pp. 400–
407, 1951.

[4] Y. E. Nesterov, “A method for solving the convex programming problem with convergence rate o (1/kˆ 2),” in
Dokl. akad. nauk Sssr, vol. 269, pp. 543–547, 1983.

[5] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum in deep
learning,” in International conference on machine learning, pp. 1139–1147, PMLR, 2013.

[6] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” Ussr computational mathe-
matics and mathematical physics, vol. 4, no. 5, pp. 1–17, 1964.

[7] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization.,”
Journal of machine learning research, vol. 12, no. 7, 2011.

[8] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701, 2012.

[9] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint arXiv:1308.0850, 2013.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[11] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal value of adaptive gradient methods in
machine learning,” arXiv preprint arXiv:1705.08292, 2017.

[12] K. Lyu and J. Li, “Gradient descent maximizes the margin of homogeneous neural networks,” arXiv preprint
arXiv:1906.05890, 2019.

[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial networks,” arXiv preprint arXiv:1406.2661, 2014.

[14] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update
rule converge to a local nash equilibrium,” arXiv preprint arXiv:1706.08500, 2017.

[15] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods with dynamic bound of learning rate,” arXiv
preprint arXiv:1902.09843, 2019.

[16] S. Reddi, M. Zaheer, D. Sachan, S. Kale, and S. Kumar, “Adaptive methods for nonconvex optimization,” in
Proceeding of 32nd Conference on Neural Information Processing Systems (NIPS 2018), 2018.

[17] L. Balles and P. Hennig, “Dissecting adam: The sign, magnitude and variance of stochastic gradients,” in
International Conference on Machine Learning, pp. 404–413, PMLR, 2018.

[18] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the adaptive learning rate and
beyond,” arXiv preprint arXiv:1908.03265, 2019.

[19] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017.

[20] J. Bernstein, A. Vahdat, Y. Yue, and M.-Y. Liu, “On the distance between two neural networks and the stability of
learning,” arXiv preprint arXiv:2002.03432, 2020.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 770–778, 2016.

[22] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.

[23] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.

8

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[25] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated corpus of english: The penn
treebank,” 1993.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[27] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of wasserstein gans,”
arXiv preprint arXiv:1704.00028, 2017.

[28] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training
gans,” arXiv preprint arXiv:1606.03498, 2016.

[29] M. R. Zhang, J. Lucas, G. Hinton, and J. Ba, “Lookahead optimizer: k steps forward, 1 step back,” arXiv preprint
arXiv:1907.08610, 2019.

9

	Introduction
	Method
	Experimental Setup
	State-of-the-Art Optimizers
	Results
	Image Classification
	Language Modeling
	Image Generation

	Discussion
	Conclusion and Future Work

