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Extended Abstract
Object recognition has received a lot of attention from the research community in the past decade,
with tremendous developments that have enabled a plethora of real-world applications. However,
these object recognition models predominantly still rely on many high-quality training examples per
object category. In real-world settings, videos and images of objects can be taken in settings where
the target object may be placed in a cluttered environment, occluded by other objects, or not ideally
positioned and framed.

Few-shot learning research has been driven in the past mostly by benchmark datasets that lack the high
variation that these applications will face when deployed in the real-world. We investigate the ORBIT
dataset that is composed of videos taken by blind/low-vision users. The ORBIT [1] dataset and
benchmark was introduced in order to close this gap, with the specific focus of developing real-world
applications using teachable object recognizers for people with impaired vision. Meta-learning has
shown remarkable success in such few-shot classification tasks. However, this performance comes at
the cost of them being memory intensive to train.

Large Image and Task Episodic (LITE) [2] is a training scheme that addresses this limitation by
obtaining an unbiased estimate of the gradients by computing the gradient on a random subset of the
support set. A limitation of LITE is that it fails to achieve optimal results when classifying objects
in a cluttered setting. To address this limitation, we propose FLITE, an improvement to LITE by
focusing the object classification task through selective backpropagation heuristics and inclusion of
bounding box information. We conduct biased subsampling of the support set for backpropagation
through blur and bounding box heuristics and use forced attention and object detection to focus the
model on the target object. The base our approach on a CNAPs [3] and ProtoNet [4] model with an
EfficientNet-B0 [5] backbone.

To address issues caused by the cluttered settings of the images, we use forced attention and object
detection approaches. This was inspired by work in areas of image segmentation [6] and multi-headed
object detection and classification [7]. We conduct forced attention through using the provided
ground-truth bounding boxes to black out the parts of the image not in the bounding boxes. These
masked images are applied in two ways: only on the support set during meta-training and only on
the query set during meta-training. Forced attention failed to improve accuracies over our cluttered
ProtoNet baseline. Masking the query set images led to performance gains over masking the support
set images but resulted in slightly lower accuracies compared to the baseline. We experiment with
using a multi-headed approach for object detection and classification, and we add an object detection
head alongside the classification head and generate an auxiliary loss (sum of both object detection and
classification losses) to back-propagate on. Performing object detection did lead to slight performance
gains over using forced attention on the support and query set results. However, compared to the
baseline the frame and video accuracies decreased marginally.

Inspired by work in the area of sample filtering for gradient estimation [8], we apply blur and
bounding box size heuristics for backpropagation subsampling selection. The blurriness of an image
is computed using the variance of the laplacian, and we take the three heuristics of the top k least
blurry, most blurry, and median blurry images. All three blurry heuristics (least, most, and median)
on the cluttered support set led to gains over the baseline. Using the median blur heuristic led to
better performance compared to least and most blurry heuristics. For the bounding box size heuristic,
we took the top k largest, smallest, and median sized bounding boxes. Using the median bounding
box heuristic led to an 0.79% increase in frame accuracy and 2.20% increase in video accuracy. The
biggest bbox heuristic led to a decrease of 1.77 frames in the number of frames-to-recognition.

Our approach outperforms the baseline cluttered image object classification results. We evaluate our
proposed modifications on the ORBIT dataset, where the video clips are cluttered with other objects
and observe a 2.2% gain in video accuracy compared to LITE.

The code used for our experiments is available here: https://github.com/SConsul/FLITE/.
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1 Introduction

Meta-learning has shown remarkable success in few-shot classification tasks. Post meta-training,
such algorithms can rapidly adapt to new classification tasks - be it through a few optimization
steps [9] or through a single forward pass [4, 3, 10] with minimal hyperparameter tuning. This is in
contrast to conventional supervised learning approached that rely on feature extractors pretrained on
large datasets, followed by a large number of optimization steps to fine-tune to the test task. This
remarkable generalizability of meta-learning, however, comes at the cost of them being memory
intensive to train; the meta-learner must backpropagate through the entire support set of a task.
Consequently, the memory required for the computational graph grows linearly with the size of the
support set, and quadratically with the dimensions of the support set images. This, in turn, limits the
size of the support set and/or requires images be down-sampled. Such practical considerations limit
the few-shot performance of meta-learners on datasets with large images.

Large Image and Task Episodic (LITE) [2] training is a training scheme that addresses this limitation
by generating an unbiased estimate of the gradients by computing the gradient on a random subset of
the support set. We challenge the need for an unbiased gradient estimate and test out various heuristics
to select the support images to back-propagate on. We additionally test out the benefit of including an
attention mechanism and object detection meta-training tasks on improving the meta-learners ability
in classification of objects in a cluttered scenario.

Our contributions are summarized as follows:

1. We achieve a 10x meta-training speed-up in addition to a 10x cut the memory requirements
for meta-training.

2. Introduce CLU-VTE, a new mode of evaluation for the ORBIT object recognition benchmark
[1] that addresses the issues of domain mismatch, negative transfer, and user convenience
that the original benchmark suffers from.

3. We achieve a 2.2% gain in test video accuracy in comparison to the LITE baseline (currently
the state-of-the-art) using our support set backpropagation sampling heuristics.

2 Related Works

2.1 Meta-Learning for Few-shot Classification

Meta-learning tackles the few-shot classification problem by learning to how to learn to classify, given
a set of training tasks, and evaluate using a set of test tasks. Each task comprises of a few samples
per class (hence the name few-shot classification) which the model has to learn from before being
evaluated on the query set, comprising of 1 sample for each of the classes. The goal of a meta-learner
is therefore to learn the parameters for a classifier, φθ from the support set, DS = {(xsn, ysn)}Nn=1
to to correctly classify the query set, DQ = {(xqm, yqm)}Mm=1. During meta-training, different



combinations and numbering of classes ensure that the meta-learner learns to extract information
of the classes from the support set to accurately classify the query set samples. Meta-learning, thus,
makes it possible to learn object recognizers on the fly, which is desired in benchmarks like ORBIT.

2.1.1 Prototypical Networks (ProtoNets)

Prototypical Networks [4] is a non-parametric meta-learning algorithm which works in the following
steps:

1. The prototype embedding for class c is computed from the class average of the embedding
of the support set from the encoding network gθ:

φθ,c =
1

kc

N∑
n=1

1(ysn = c)gθ(xsn), where kc =

N∑
n=1

1(ysn = c) (1)

2. Each sample in the query set (xqm, yqm) ∈ DQ is labelled to the closest prototype in the
embedding space, using a distance metric, d (such as Euclidean distance):

p(yqm = k|x) = softmax (−d(gθ(xqm), φθ,k)) (2)

3. The predicted class labels of the meta-training query set is used to compute the cross-entropy
loss that is back-propagated to update the parameters θ.

2.1.2 Conditional Neural Adaptive Processes (CNAPs)

CNAPs is a black box meta-learning approach that encodes each support set using a neural network,
eν . The summation of all the embedding vectors of the support set is passed through the hyper-network
tθ to obtain the classifier parameters.

φθ = tθ

(
N∑
n=1

eν(xsn, ysn)

)
(3)

φθ is evaluated on the support set, whose loss is backpropagated to update all the parameters.

2.2 Conventional Meta-Learners on ORBIT

The curators of the ORBIT [1] dataset evaluate conventional meta-learning algorithms such as
ProtoNet [4], CNAPs [3] and MAML [9] on their dataset. Despite using two Nvidia V100 32GB
GPUs, the memory requirements of meta-learning are so high that the authors had to resize the video
frames down to 84× 84 from 1080× 1080. A cursory glance of the ORBIT dataset makes it apparent
that in many cases the object of interest are tiny (for instance, a key on a cluttered desk) and thus, the
drastic down-sampling of the video frames resulting in a significant drop in accuracy.

2.3 Large Image and Task Episodic (LITE) Training

Large Image and Task Episodic (LITE) training [2] proposed that while the forward pass is done on
the entirety of the support set, DS , gradients are estimated using a random subset,H, of the support
set. By selectingH (of size H) by uniform random sampling, it is shown that the gradient computed
on H is an unbiased estimate of the gradient computed on DS . This reduces the memory cost for
back-propagation by a factor of N/H , which can be dramatic when H << N .

The authors demonstrate the applicability of their method by integrating their training procedure
with conventional meta-learners (CNAPs, ProtoNet, MAML) on the ORBIT dataset, with the frame
resolution kept at 224× 224 on a single Titan RTX 24GB GPU in comparison to the baseline meta-
learner that needed two V100 32GB GPUs to meta-learn on a down-sampled 84× 84 dataset. By
setting H = 8, the tremendous memory savings LITE is able to provide allows for higher resolution
inputs and more sophisticated neural networks which result in the LITE meta-learners outperforming
their standard counterparts (see Table 1).
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Algorithm 1 The LITE Training Scheme
Input: DS : Task Support Set, DQ of size N: Task Query Set of size M, Mb: batch size for DQ

H: Number of support samples to back-propagate on

1: B ← ceil(M/Mb) . number of batches
2: for b = 1 to B do
3: DQb

← {xqm, yqm}Mb
m=1 . batch from query set

4: H ← {xsnh
, ysnh

}Hh=1, where {nh}Hh=1 ∼ U(1, N) . subset of DS to back-propagate on
5: φθ ← Φθ(DS) . forward pass on the entire DS
6: Lb ← 1

Mb

∑Mb

m=1 L(yqm, f(xqm;φθ)) . get loss of query batch
7: backward(Lb)H . back-propagate loss onH
8: end for
9: θ ← step(θ,N/H) . update θ with re-weighting factor

Table 1: Performance on ORBIT with and without LITE [2]

Standard LITE
Model Frame Acc Video Acc Frame Acc Video Acc

CLE-VE
ProtoNet 65.2 (2.0) 81.9 (2.5) 82.1 (1.7) 91.2 (1.9)
CNAPs 66.2 (2.1) 79.6 (2.6) 79.6 (1.9) 87.6 (2.2)
MAML 70.6 (2.1) 80.9 (2.6) 79.3 (1.9) 87.5 (2.2)

CLU-VE
ProtoNet 50.3 (1.7) 59.9 (2.5) 66.3 (1.8) 72.9 (2.3)
CNAPs 51.5 (1.8) 59.5 (2.5) 63.3 (1.9) 69.2 (2.3)
MAML 51.7 (1.9) 57.9 (2.5) 64.6 (1.9) 69.4 (2.3)

2.4 Object Localization in Cluttered Settings

Previous work in the area of classification of objects in cluttered or busy settings have proposed
approaches in the domains of image segmentation [6], object localization [7], and patch sampling
[11]. [6] use a prototype-based segmentation model to generate region proposals for the query set
and masks the cluttered regions in the support and query set for localization of the target object.
StarNet [7] proposes a multi-headed detection and classification model for cluttered image object
detection. In the absence of bounding box information, StarNet uses a voting and back-projection
method to create heat-maps of potential target object locations within the image, and this object
detection information is used in combination with classification for few-shot object detection and
classification. [11] sample patches from images according to maximum entropy. The images can
be cropped or zoomed in portions of the whole image, and the combination of the sampled patches
are used as inputs to aid in classification. These previous approaches motivated our work on forced
attention and object detection, which are discussed in detail in Sec. 4.1.

2.5 Filtering Points for Gradient Estimation

Building upon work on robust mean estimation, SEVER[8] proposes iteratively filtering out samples
to compute gradients robust to data poisoning. Points are iteratively filtered by removing samples that
are furthest away from the mean gradient along the largest singular vector of the centered gradient
matrix. While such a filtering procedure is too computationally expensive to be suitable for our
purposes, it nevertheless demonstrates the benefit of biased gradient estimates when the objective
is not fit to the training data. Similarly, the objective of meta-learners is not to fit to the support set
data but to generalize to the query set. SEVER thus serves as inspiration for our backpropagation
heuristics, detailed in Sec. 4.2.

3 Dataset, Benchmark, and Evaluation Metrics

3.1 ORBIT Dataset

Object recognition has received a lot of attention from the research community in the past decade,
with tremendous developments that have enabled a plethora of real-world applications. However,
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these object recognition models predominantly still rely on many high-quality training examples
per object category. In contrast, few-shot learning facilitates the development of many applications
from robotics to user personalization. However, few-shot learning research has been driven in the
past mostly by benchmark datasets that lack the high variation that these applications will face
when deployed in the real-world. The ORBIT [1] dataset and benchmark was introduced in order to
close this gap, with the specific focus of developing real-world applications using teachable object
recognizers for people with impaired vision.

The ORBIT dataset comprises of 3,822 videos (captured at 30 FPS) of 486 object categories recorded
by 77 blind/low-vision people on their mobile phones. The number of samples per class varies from
33 to 3,600 with a total of 2,678,934 samples ( 83 GB) across all the classes across the entire dataset.
Among these 3,822 videos, 2,996 videos show the object of interest in isolation and are referred to as
the clean videos, while the remaining 826 videos show the object of interest in a realistic, multi-object
scene, referred to as the clutter videos. Here, given that the clutter videos can contain multiple objects,
the ORBIT dataset provides bounding box annotations around the target object in all clutter videos.
Examples of frames from clean and clutter videos from the ORBIT dataset can be found in Fig. 1 and
Fig. 2, respectively.

Figure 1: Frames from clean videos [1]

Figure 2: Frames from clutter videos [1]

We primarily chose to work with the ORBIT dataset because unlike most popular object recognition
benchmarks such as Omniglot [12], miniImageNet [13], Meta-Dataset [14], and TEgO [15], the
ORBIT dataset shows objects in a wide range of real-world conditions. For instance, the ORBIT
dataset contains instances where the objects are poorly framed, occluded by hands and other objects,
blurred, and in a wide variation of backgrounds, lighting, and object orientations. Furthermore, given
that our goal is the efficient classification of large/high-quality images on a single GPU, the ORBIT
dataset was perfect for the application of LITE training for meta learning. Finally, with this goal in
mind, we found that the dataset could be subsampled at a rate of 1/10 (i.e. discard 9/10 frames) with
only a minimal drop (determined empirically based on various subsampling rates) in performance,
thus resulting in a 10x speed-up in meta-training time.

3.2 Teachable Object Recognition Benchmark

The ORBIT dataset provides a realistic and challenging few-shot benchmark for teachable object
recognizers with a focus on people who are blind/low-vision. The ORBIT evaluation protocol is
designed to reflect how well an object recognizer will work in the hands of a real-world user, both in
terms of performance and computational cost to personalize. In order to achieve this, the benchmark
is trained and tested in a user-centric way where the tasks are sampled per-user. This is in contrast to
other existing few-shot (and more) benchmarks because the ORBIT benchmark offers insights into
how a well a meta-trained object recognizer can personalize to a single user.

With this goal in mind, the sets of train users and test users must be disjoint and as such, the 67
ORBIT collectors are split into 44 train users, 6 validation users, and 17 test users. Additionally,
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in order to ensure that the test cases are sufficiently challenging, the benchmark enforces that the
test and validation users have a minimum of 5 objects. The total number of objects in the splits
are 278/50/158, respectively. That being said, the ORBIT teachable object recognition benchmark
establishes two modes of evaluation (CLE-VE and CLU-VE). In addition to these, we establish an
additional mode of evaluation (CLU-VTE). These modes of evaluation are detailed as follows:

Clean Video Evaluation (CLE-VE) The test user’s support set is constructed from their clean
videos and query set is constructed from a held-out set of their clean videos. This evaluation mode is
used to serve as a simple check that the user’s clean videos can be used to recognize the user’s objects
in novel ’simple’ scenarios when the object is in isolation.

Clutter Video Evaluation (CLU-VE) The test user’s support set is constructed from their clean
videos and query set is constructed from their clutter videos. This mode matches the real-world usage
of an object recognizer where a user captures clean videos to register an object and needs to identify
those objects in complex, cluttered environments.

Clutter Video Training and Evaluation (CLU-VTE) The test user’s support set is constructed
from their clutter videos and query set is constructed from a held-out set of their clutter videos. We
introduced this mode of evaluation in order to address three issues with the earlier detailed modes of
evaluation:

1. Domain mismatch: Using clean videos for the support set while using clutter videos for
the query set can lead to poor performance as a result of the domain mismatch/distributional
shift that exists between the two sets.

2. Negative transfer: Using clean videos during meta-training while using clutter videos
during meta-testing can lead to drastic negative transfer since object recognition on clean
images is a much easier task in comparison to object recognition on clutter images.

3. User convenience: When it comes to people with blind/low-vision (who will be the main
users of these real-world applications), capturing clean videos for each of the objects by
removing the rest of the objects from the clutter in order to register these objects can become
tedious when the number of objects to register becomes large.

In each of the above cases, replacing the clean video support set with clutter videos mitigates the
issue. It reduces domain mismatch because both the support and query sets now comprise of clutter
videos, it reduces negative transfer because the meta-training tasks become significantly harder as
a result of performing object recognition on clutter videos, and it improves user convenience since
blind/low-vision users no longer have to go through the tedious process of removing clutter from the
object of interest when registering them.

3.3 Evaluation Metrics

We primarily evaluate the performance on the ORBIT object recognition CLU-VTE benchmark using
three evaluation metrics: frame accuracy, frames-to-recognition (FTR), and video accuracy. The
↑ / ↓ symbols indicate whether a higher / lower value for the metric is better, respectively. These
metrics are computed for each target video in all tasks for all users in the test set. We then report the
average and 95% confidence interval of each metric over this flattened set of videos, denoted T all.
The remaining notations follow the same convention as [1], where, for a test user k ∈ Ktest, the target
video of object p ∈ Pk is denoted as v [v1, . . . , vF ] and its frame predictions as y∗ = [y∗1 , . . . , y

∗
F ],

where F is the number of frames and y∗f ∈ Pk. Additionally, y∗mode is denoted as the video’s most
frequent frame prediction.

Finally, given that our goal is efficient object recognition, we also report the average meta-training
time as an additional cost metric to analyze the performance-efficiency trade-off for each method.

Frame accuracy (↑) The number of correct frame predictions by the total number of frames in the
video. The frame accuracy is defined as:

1

|Tall|

∑
(v,p)∈T all

1

|v|

|v|∑
f=1

1[y∗f = p] (4)
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Frames-to-recognition (FTR) (↓) The number of frames (with respect to the first frame) before a
correct prediction is made by the total number of frames in the video. The FTR is defined as:

1

|Tall|

∑
(v,p)∈T all

1

|v|
argmin
vf∈v

y∗f = p (5)

Video Accuracy (↑) Whether or not the video-level prediction equals the video-level object label.
The video accuracy is defined as:

1

|Tall|
∑

(v,p)∈T all

1[y∗mode = p] (6)

where y∗mode = argmaxp∈PK
∑|v|
f=1 1[y∗f = p]

4 Methodology

4.1 Focusing LITE

Forced Attention We hypothesize that using an attention mechanism to focus on the part of the
cluttered image with the object of interest would lead to an improvement in performance. Before
attempting to apply a learned attention mechanism (which would be computationally expensive),
we wanted to apply a forced attention mechanism using the provided ground-truth bounding to
simulate the effect of a learned attention mechanism as a proof-of-concept to see if performance
would improve. In order to do this, we use the provided ground-truth bounding boxes to black out the
parts of the image not in the bounding boxes. This acts as a forced attention mechanism where only
the object of interest contained in the bounding box provides useful signals to the model.

Here, we follow two approaches:

1. Support-Set Attention: We apply forced attention only on the support set in order to focus
on the part of the image with the object of interest when generating the prototypes.

2. Query-Set Attention: We apply forced attention only on the query set in order to focus on
the part of the image with the object of interest when classifying image.

We decided to follow this two-pronged approach in order to perform an ablation study into which of
the two sets provided more crucial signals to learning during the meta-training time. An example of
forced attention applied to an image from the ORBIT dataset is given below in Fig. 3.

Figure 3: Example of forced attention applied to an image

Object Detection Head We hypothesize that making the meta-training tasks harder by learning to
predict the bounding boxes simultaneously during classification may lead to improved performance
as a result of higher positive transfer. As such, we add an object detection head alongside the
classification head and generate an auxiliary loss (sum of both object detection and classification
losses) to back-propagate on. An illustration of the modification to the architecture with the object
detection head is given in Fig. 4.
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Figure 4: Illustration of the modified architecture with the object detection head

Here, the distance-intersection of union (dIoU) loss [16] is used as the loss function for the object
detection head. We chose to use the dIoU loss as it has been empirically shown to lead to faster and
better learning for bounding box regression. The dIoU loss is defined as:

LdIoU = 1− IoU +
ρ2(b, bgt)

c2
(7)

where the distance metric is defined as ρ2(b,bgt)
c2 . Here, b and bgt denote the center coordinates of

the predicted and ground-truth bounding boxes, ρ(·) denotes the euclidean distance, and c denotes
the diagonal length of the smallest enclosing box covering the two bounding boxes. Finally, the
intersection of union (IoU) metric is defined as:

IoU =
|B ∪Bgt|
|B ∩Bgt|

(8)

where Bgt = xgt, ygt, wgt, hgt is the ground-truth bounding box and B = x, y, w, h is the predicted
bounding box. We use 1− IoU here because we want to maximize the intersection of union metric
so the predicted bounding box is as close to the ground-truth bounding box as possible.

Once both the losses are computed, the final loss is computed as the summation of the cross entropy
and dIoU loss as follows:

L = γ1Lcross−entropy + γ2LdIoU (9)

where γ1 and γ2 are the loss weighting factors for the cross entropy and dIoU losses, respectively.
According to empirical results based on a grid hyperparameter search, we found γ1 = 1 and γ2 = 1
to be the best weighting factors for the two losses.

4.2 Backpropagation Sampling Heuristics

As examined earlier, LITE training involves the random sampling of instances from the support set
for efficient backpropagation through the formation of an unbiased estimate of the gradient. We
hypothesize that an unbiased estimate is not always the best estimate and apply sampling heuristics
to select better instances from the support set to backpropagate on, thus, allowing us to form better
estimates of the gradient that enable better LITE training. We attempted two different sampling
heuristics: blur and bbox, as detailed below.

Blur Heuristic The blurriness of an image is computed using the variance of the laplacian of the
gray-scale version of the image as follows:

blurriness = −V ar(∇2(gray-scale Image))

= −V ar

([
0 −1 0
−1 4 −1
0 −1 0

]
∗ (gray-scale Image)

)
(10)

The negative sign is needed as the most blurry images have the least variance in the laplacian of the
image. Conversion to gray-scale is done using the standard cv2 conversion.

We hypothesize that while sampling blurrier images makes the training task harder (thus, enabling
more positive transfer), it also results in a higher loss in information. In order to analyze the trade-off
between task difficulty and information loss, we decided to make use of three heuristics based on the
blur heuristic:
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1. Least Blur: Select the k least blurry images to sample from the support set. This results in
low task difficulty but also low information loss.

2. Most Blur: Select the k most blurry images to sample from the support set. This results in
high task difficulty but also high information loss.

3. Median Blur: Select the k median images after sorting by blurriness to sample from the
support set. This results in a task difficulty / information loss trade-off that is in between the
least blur and most blur heuristics.

Some examples of images from the ORBIT dataset from least blurry (left) to most blurry (right) are
given below in Fig. 5.

Figure 5: Examples of images from least blurry (left) to most blurry (right)

Bounding-Box (BBox) Heuristic As mentioned earlier, the ORBIT dataset provides bboxes on
a frame-level for the clutter videos in the format (x, y, w, h) where x and y are the bbox center x
and y coordinates, respectively, and w and h are the width and height of the bbox, respectively. We
compute the sizes of the bboxes as a product of the width w and height h as follows:

bbox size = w · h (11)

Similar to the blue heuristics, we hypothesize that while sampling images with smaller bboxes makes
the training task harder (thus, enabling more positive transfer), it also results in a higher loss in
information. In order to analyze the trade-off between task difficulty and information loss, we decided
to make use of three heuristics based on the bbox heuristic:

1. Largest BBox: Select the k images with the largest bboxes to sample from the support set.
This results in low task difficulty but also low information loss.

2. Smallest BBox: Select the k images with the smallest bboxes to sample from the support
set. This results in high task difficulty but also high information loss.

3. Median BBox: Select the k images with median bboxes after sorting by bbox sized to
sample from the support set. This results in a task difficulty / information loss trade-off that
is in between the largest bbox and smallest bbox heuristics.

Some examples of images from the ORBIT dataset from largest bbox (left) to smallest bbox (right)
are given below in Fig. 6.

Figure 6: Examples of images from largest bbox (left) to smallest bbox (right)

5 Experiments and Results

5.1 Experimental Setup

We ran our experiments on a single Nvidia Tesla T4 16GB GPU for an average of approximately
12 hours per experiment. We test two meta-learning frameworks, CNAPs and Protonet, using an
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EfficientNet-B0 backbone that is pre-trained on ImageNet [17]. The inputs to our CNAPs and
ProtoNet models are clips of size N × 3 × 224 × 224, where N is the number of 3 × 224 × 224
images per clip. We train our models using a clip size of N = 8. For the support set, we use 4
samples for backpropagation, and we use a query set batch size of 4. Our data is split into train,
validation, and test sets, and we train using the Adam optimizer and a learning rate of 1× 10−4 for 5
epochs on CNAPs and 6 epochs on ProtoNet with validation on every other epoch.

5.2 Results

The quantitative results of our experiments are given in Table 2, which outlines the average frame and
video accuracies over the 95% confidence intervals along with the corresponding standard deviations.

Table 2: Quantitative results of experiments

Model Method Eval Mode Frame Acc (%) ↑ FTR ↓ Video Acc (%) ↑
CNAPs Non-Subsampled1 CLU-VE 66.30 (1.80) - 72.90 (2.30)

CNAPs None CLU-VE 63.92 (1.86) 15.37 (1.65) 70.33 (2.31)
CNAPs Least Blur CLU-VE 63.93 (1.86) 15.40 (1.65) 70.20 (2.31)
CNAPs Most Blur CLU-VE 63.96 (1.86) 15.06 (1.63) 70.67 (2.30)

CNAPs None CLU-VTE 74.63 (2.29) 15.93 (2.03) 77.40 (2.59)
CNAPs Least Blur CLU-VTE 75.20 (2.25) 15.10 (1.98) 78.20 (2.56)
CNAPs Most Blur CLU-VTE 75.18 (2.26) 15.08 (1.97) 78.30 (2.55)
CNAPs Median Blur CLU-VTE 75.31 (2.26) 14.80 (1.95) 78.60 (2.54)
CNAPs Largest BBox CLU-VTE 75.16 (2.26) 14.16 (1.91) 78.20 (2.55)
CNAPs Smallest BBox CLU-VTE 75.23 (2.26) 14.25 (1.93) 78.70 (2.54)
CNAPs Median BBox CLU-VTE 75.42 (2.25) 14.92 (1.97) 79.60 (2.50)
ProtoNet None CLU-VTE 78.14 (2.15) 14.48 (1.96) 83.10 (2.32)
ProtoNet Attention (Support) CLU-VTE 74.20 (2.34) 18.34 (2.23) 78.40 (2.55)
ProtoNet Attention (Query) CLU-VTE 77.83 (2.14) 16.54 (2.14) 82.30 (2.37)
ProtoNet Object Detection CLU-VTE 78.03 (2.20) 16.40 (2.15) 82.50 (2.36)

Subsampled Dataset With the dataset subsampled to be 10x smaller compared to the original
dataset, we detected a 2.38% and 2.57% decrease in frame and video accuracies respectively, as seen
in Table 2. Additionally, the LITE CNAPs model trains for 15 epochs, while our subsampled data on
CNAPs trains for 5 epochs. Though these training approaches lead to a slight decrease in accuracy, we
found that this subsampling rate and number of training epochs gives us the best speed-performance
trade-off and as such, we decided to use the subsampled dataset in all our subsequent experiments in
the interest of efficiency.

Forced Attention Forced attention on the support set during meta-training time and forced attention
on the query set during meta-training time failed to improve accuracies over our cluttered ProtoNet
baseline. Masking the support set to create the prototype features led to a decrease in of 3.94%
and 4.70% in frame and video accuracies respectively. We hypothesize this behavior is due to
making the task “too easy” during meta-train time. As seen in Fig. 6, there exist cases where the
target object occupies very small space within the frame or it does not appear within a frame. This
leads to excessive masking, which results in too much loss of information. On the query set and
during meta-testing, there is increased noise from the cluttered, unmasked background that leads to
performance degradation.

Masking the query set images led to performance gains over masking the support set images but
continued to result in slightly lower accuracies compared to the baseline. This lower accuracy could
be a consequence of the training query data not being an optimal representation of the test data due to
the masking. Since the cluttered surroundings are covered in the query set with a mask, the model
struggles during test time with the background noise from the test data. However, this improvement

1Baseline result from LITE [2] paper
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over forced attention on the support set signals that there is greater potential for modifications on the
query set training to lead to improvements in accuracies over modifications the on support set.

Object Detection Performing object detection alongside object recognition resulted in a slight
decrease in performance compared to the baseline. The frame and video accuracies decreased by
about 0.11% and 0.60%, respectively, while the FTR increased. However, using object detection did
lead to slight performance gains over using forced attention on the support and query set results. It is
likely that the minimal change in performance is due to an overly simplistic object detection model,
so it may not be able to accurately detect the target object of interest. The object detection model
used may not be optimal for handling this task, thus causing negative interference with the object
classification task.

Blur Heuristic All three blurry heuristics (least, most, and median) on the cluttered support set led
to gains over the baseline. Using the median blurriness heuristic led to better performance compared
to least and most blurry heuristics.

We experimented with the sampling of images in accordance to the blur heuristics and tested on both
the clean and cluttered support set. On the clean support set, we found no change in performance for
either using the least or the most blurry heuristic. On the cluttered support set, we obtained marginal
improvements in FTR and in frame and video accuracies, with the greatest gains resulting from using
a median blur backpropagation subsampling heuristic. This improvement in performance on clutter
over clean can be attributed to the fact that the cluttered dataset contains more difficult images and
data to handle as there is more variability in the quality of videos collected for the cluttered dataset,
so applying the blur heuristic is more effective in influencing performance.

The least blur heuristic results in small gains in performance. This can be attributed to the fact that
using the least blurry images on which to backpropagate is an “easier” problem. During meta-test
time, the model may encounter blurry images such as those as seen in examples in Fig. 5 that it
may have difficulty classifying. Using the most blurry heuristic makes the problem more “difficult”,
however, this comes with the cost of poor quality frames that do not optimally capture the target
object or provide adequate information to the classifier for recognition. There is a trade-off between
difficulty of the task and the quality of the image. Taking a median blurry heuristic balances these two
factors and provides a sufficiently difficult task with the object slightly blurred but still recognizable.

Bounding Box Heuristic The bounding box backpropagation subsampling heuristic led to the
lowest FTR and the greatest increase in both frame accuracy and video accuracy. Using the median
bbox heuristic led to a 0.79% increase in frame accuracy and 2.20% increase in video accuracy. The
biggest bbox heuristic led to a decrease of 1.77 frames in the number of frames-to-recognition.

Using the largest bbox and smallest bbox heuristics led to smaller increases in performance because
the selected images were unable to optimally capture the object. As Fig. 6 shows, the smallest bbox
heuristic leads to selection of frames where the object is partially cut off or not within the frame. The
largest bounding box can lead to frames of extreme zoom on the target object to the point where it is
difficult to discern what the image is. Using a median bbox heuristic increases the likelihood that
the object is fully captured and in the frame. However, the largest bbox heuristic also results in the
smallest FTR of 14.16, which indicates that the classifier has high confidence in the classifying the
object, but is wrong. This could be attributed to the fact that with larger bounding boxes, there is less
clutter in the frame.

6 Conclusion

In this work, we propose FLITE, an improvement to LITE by focusing the object classification task
through selective backpropagation heuristics and inclusion of bounding box information. LITE fails
to achieve optimal results when classifying objects in a cluttered setting. To address this limitation,
we conduct biased subsampling of the support set for backpropagation through blur and bounding
box heuristics. Our approaches outperforms the baseline cluttered image object classification results.

Directions for future work involve investigating other possible backpropagation heuristics that could
lead to improvements in model performance, using a more optimal, pre-training object detection
network, and meta-train with the subsampling heuristics on multi-step frameworks (eg. MAML).
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7 Team Contributions

Sarthak Consul Worked on designing, implementing, testing, and analysing the object detection
head and bounding box support set backpropagation sampling heuristic in additional to general team
tasks such as maintaining the code-base, writing the proposal, milestone, final report, and poster.

His original planned contribution was to explore self-supervised learning to enforce center-focusing.
Upon careful inspection of the dataset, it was realised that the objects of interest do not in fact
follow any pattern in their location. Thus, a more semantic based approach, that is better captured by
object detection frameworks made sense to learn attention. This change in plans enabled the group
devise multiple heuristics for sample selection while also exploring the use of object detection during
meta-training for better classification of cluttered videos.

Sharan Ramjee Worked on designing, implementing, testing, and analysing the forced attention
mechanism, blur support set backpropagation sampling heuristic, and bounding box support set
backpropagation sampling heuristic in additional to general team tasks such as maintaining the
code-base, writing the proposal, milestone, final report, and poster.

His original planned contribution in accordance to the proposal was to experiment with support set
augmentation with central zoom crops and preferentially select such examples for the backward pass.
His contributions changed from experimenting with the central zoom crops to experimenting with the
forced attention mechanism (same zoom crop concept). Finally, the preferential selection of examples
for the backward pass remained unchanged and took the form of the blur and bounding box support
set backpropagation sampling heuristics.

Julia Xu Worked on designing, implementing, testing, and analysing the object detection head,
running experiments based on the modifications to LITE (focusing LITE and backpropagation
sampling heuristics), and analysing the results obtained in additional to general team tasks such as
maintaining the code-base, writing the proposal, milestone, final report, and poster.

Her original planned contribution from the project proposal was to implement and integrate the
meta-learning instance detection through bounding box information to the meta-classifier. This
task was modified to focus more on forced attention with masking and object detection, and she
contributed to working on this.
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