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Abstract

Human action recognition is an important task in video
understanding, with applications ranging from robotics to
autonomous driving. Among the variety of approaches,
Graph Learning based human action recognition has be-
come extremely popular for its ability to simultaneously
learn spatial and temporal patterns from data, in addi-
tion to its greater expressive power and stronger gener-
alization capability in comparison to other methods. In
particular, Spatial Temporal Graph Convolution Networks
(ST-GCN) [lI|] use a set of spatial and temporal graph
convolutions on the human skeleton sequences in order
to achieve state-of-the-art performance on on the NTU
RGB+D 60 dataset, which is the largest in-house cap-
tured benchmark for 3D human action recognition. Nev-
ertheless, an effective encoding of the latent information
underlying the 3D skeleton is still an open problem, es-
pecially when it comes to extracting effective information
from joint motion patterns and incorporating contextual in-
formation from the video frames. In this paper, we pro-
pose a novel Spatial-Temporal Context-aware Transformer
Network (ST-CTR), which models dependencies between
joints using the Transformer self-attention operator while
incorporating contextual information from the human ac-
tion recognition video frames. Through our extensive ex-
periments, we demonstrate the improved action recognition
performance of ST-CTR on the NTU RGB+D 60 dataset in
comparison to other state-of-the-art human action recog-
nition methods. The source code is available on GitHub:
https://github.com/sharanramjee/st—-ctr.

1. Introduction

Human action recognition is a crucial task to video un-
derstanding, with vast applications in autonomous driving
and robotics [2]. Several modalities (such as depth maps,
optical flow, skeletons) have been explored to perform hu-
man action recognition. Among these, skeleton-based hu-
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man action recognition remains relatively less explored,
only recently gaining popularity due to the recent advances
of graph based Deep Learning methods, such as Graph Con-
volutions Networks (GCNs) [3]. By modelling the dynam-
ics of joint positions over time, skeleton-based methods are
a much more natural representation of the video input data;
they allow for the training of models with better discrim-
inative capabilities by analyzing the motion of the human
skeleton. Furthermore, by significantly reducing the dimen-
sionality of the input video data, skeleton-based methods
allow for faster, less computationally expensive inference,
which is highly desirable for real-time applications such as
autonomous driving.

Given the advantages of skeleton-based action recogni-
tion, we aim to explore designs which extend and combine
elements from different state-of-the-art models. For one,
we aim to explore GCNs to spatially analyze skeletons and
product rich feature representations. Moreover, given their
recent success, we aim to use transformers [4] in order to
model long and short term relationships in the skeletons.
By combining GCNs with transformers, we can analyze the
human skeleton both spatially and temporally, while using
global context information from input video frames in order
to enrich our feature representations. Furthermore, since
only a few of the joints in the skeleton are important for
action recognition, an additional self-attention mechanism
[5] will enable our model to focus on those discriminative
joints.

Our goal is to reliably perform action recognition on
RGB video input using a model that builds on prior work
by (1) using GCNs to spatially analyze the skeletons, (2)
using a Multimodal Split Attention Fusion (MSAF) module
to generate contextual information to incorporate into our
model, and (3) using context-aware transformer networks
to effectively aggregate skeleton information through time.

In the subsequent sections, we introduce the ST-CTR
pipeline and its components, establish a baseline model
along with other recently published (in the past year) state-
of-the-art human action recognition methods, and proceed
to show that our ST-CTR model outperforms the other



methods (both qualitatively and quantitatively) on the NTU
RGB+D 60 dataset [6] across both the Cross-Subject (X-
Sub) and Cross-View (X-View) benchmarks. For the qual-
itative evaluation, we analyze the performance of our ST-
CTR model through the NTU RGB+D 60 test set confu-
sion matrices. For the quantitative evaluation, following
prior work [l [7]], we analyze the performance of our ST-
CTR model in comparison to other state-of-the-art methods
through the NTU RGB+D 60 test set top-1 classification
accuracies. Finally, we delve deeper into the components
of our ST-CTR pipeline to analyze the performance gain
achieved over the other methods.

2. Related Works

Yan et al. [1]] proposed a Spatial-Temporal Graph Con-
volutional Network (ST-GCN) model that performs action
recognition on skeletons generated using a pre-trained pose
estimation model. However, unlike our proposed model,
they did not incorporate an RNN model; Instead, they com-
bined the different skeletons by connecting the joints across
successive frames. A large limitation of their method is
that the ST-GCN cannot perform action prediction for fu-
ture frames by generating skeletons.

Next, Plizzari et al. [[/] proposed a Spatial-Temporal
Transformer Network (ST-TR) model, which combined
GCNs and transformers to perform skeleton-based action
recognition. The ST-TR model models dependencies be-
tween joints using the transformer self-attention operator.
Furthermore, similar to our model, the ST-TR model is
able to perform action prediction since it uses an underly-
ing RNN model in the spatial and temporal self-attention
modules, which allows ST-TR to generate skeletons for fu-
ture frames given an initial set of skeletons. However, un-
like our proposed model, the ST-TR model does not lever-
age global video contexts when performing the transformer
self-attention operations, which can lead to poor general-
izability on unseen data captured in different settings and
configurations.

Lastly, Liu et al. [8] designed a Global context-aware
attention LSTM (GCA-LSTM) network which can effec-
tively perform action recognition on RGB video data. Un-
like our work, however, the GCA-LSTM model does not
incorporate GCNs to capture spatial patterns in skeletons
across frames. We take inspiration from key parts of their
design, primarily their video contextual embedding genera-
tion, to better leverage global context in our proposed trans-
former model by using a Multimodal Split Attention Fusion
(MSAF) module to generate contextual information to in-
corporate into our ST-CTR model.

As such, our proposed ST-CTR model is different from
each of these prior works, and instead combines several el-
ements from these different designs.

3. Dataset

Given its popularity and significance in the field of Com-
puter Vision, the task of human action recognition has sev-
eral benchmarks, each with a focus on a particular group of
applications. For our work, we evaluate the performance of
ST-CTR in comparison to other state-of-the-art human ac-
tion recognition methods on the NTU RGB+D 60 dataset
[6], which is the largest in-house captured benchmark for
3D human action recognition collected using a Microsoft
Kinect v2. The dataset comprises of RGB videos, depth se-
quences, skeleton data (25 joints with 3D pose features),
and infrared frames collected for 56,880 RGB+D videos
across 60 action classes. We believe that the larger size of
the dataset (~4,000,000 frames), additional skeleton infor-
mation (25 joints with 3D pose features), and additional ac-
tion classes (60 classes) make the NTU RGB-D 60 dataset a
better benchmark in comparison to others for the evaluation
of our approach. The dataset follows two different crite-
ria for evaluation. The Cross-Subject Evaluation (X-Sub)
uses 40,320 training and 26,560 test samples split accord-
ing to the subjects performing the actions. The Cross-View
Evaluation (X-View) uses 37,920 training and 18,960 test
samples split according to the camera views from which the
action is taken. The NTU RGB+D 60 skeleton joint con-
nection configuration is given in Fig.
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Figure 1. NTU RGB+D 60 skeleton joint configuration [6]

The dataset is pre-processed following the pre-
processing performed by Shi ez al. [9l [10]. The skeleton
joints for each frame are used to form a directed acyclic
graph (DAG) with the joints as nodes and bones as edges
in accordance to the joint configuration specified in Fig. [I}
The spine joint” (joint 21) is considered to be the the center
of gravity of the skeleton and is denoted as the root node.
The direction of each edge is determined by the distance be-
tween the node and the root node, where the node closer to
the root node points to the node further away from the root
node. Prior work [} [7]] suggests that this representation is
intuitive since the human body is a naturally articulated sys-
tem where the joints further away from the center of the hu-
man body are always physically controlled by an adjacent
joint which is closer to the center.



Finally, each graph is normalized to make the distribu-
tion of the data for each channel unified. Specifically, the
coordinates of each joint are subtracted from the those of
the root node. Furthermore, in order to account for different
skeletons captured from different viewpoints, the 3D loca-
tion of the joints are translated from teh camera coordinate
system to body coordinates. Specifically, 3D rotations are
performed to fix the X axis parallel to the 3D vector from
the “right shoulder” (joint 5) to the "left shoulder” (joint 9)
and the Y axis toward the 3D vector from the “’spine joint”
(joint 21) to the ”spine base” (joint 2) [[11]]. An example of
pre-processing is given in Fig. 2]

before-preprocess
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Figure 2. NTU RGB+D 60 skeleton graph pre-processing [[11]

4. State-of-the-Art Methods

In order to evaluate the performance of the proposed ST-
CTR model in comparison to other human action recogni-
tion methods, we explore the performance of recently pub-
lished (in the past year) GCN-based state-of-the-art action
recognition methods, which are detailed in this section.

ST-GCN (Baseline) Yan et al. [1]] proposed Spatial Tem-
poral Graph Convolution Networks (ST-GCN), which is a
skeleton-based human action recognition method that uses
GCNs to capture both spatial and temporal patterns in
data. Through extensive experiments, they demonstrated
that GCNs not only lead to greater expressive power, but
also result in stronger generalization capability of the ST-
GCN. When considering joint ¢ at time step ¢ (i.e. vy;), the
output of the spatial graph convolution are expressed as fol-
lows:

fout (Uti) - Z

vq; €B(vti)

1
mfm(vqj) - w(lsT(vg;))

where B(vy;) is the spatial and temporal neighbourhood
of node vy;. lgr is a partitioning function that maps each
neighbour of node vy; to one of K subsets. Zti(vqj) is a
normalization term that is added to balance the contribu-
tions of the different subsets, and w is the learnable weight
function.

As part of their work, [[1] explored several different par-
tition strategies. For the sake of our baseline, we selected

the spatial configuration partitioning strategy, since it per-
formed best in the original paper. Spatial configuration
partitioning assigns labels to nodes based on their distance
from a reference node (center of gravity). This partitioning
method improves performance by learning more meaning-
ful hierarchical representations of the joints in the skeleton
graph [1]. The ST-GCN model is composed of 9 layers of
spatial temporal graph convolution operations and a global
pooling layer. The output is then fed into a softmax classi-
fier to output the action. In our baseline model, we further
implemented dropout layers with p = 0.5 in order to com-
bat overfitting.

PeGCN Li et al. [12] proposed Predictively Encoded
Graph Convolutional Networks (PeGCN), which are highly
efficient GCNs that use a parallel structure to gradually
fuse motion and spatial information by reducing the tempo-
ral resolution as early as possible. PeGCNs achieve state-
of-the-art performance on the NTU RGB+D 60 dataset
with 86%-93% fewer parameters as a consequence of pre-
processing that refines the poses before performing GCN-
based action recognition.

RA-GCN Song et al. [13] proposed Richly Activated
Graph Convolutional Networks (RA-GCN), which are
multi-stream GCNs that explore sufficient discriminative
features spreading over all skeleton joints in order to re-
duce the sensitivity of the action models to non-standard
skeletons as a consequence of forming distributed redun-
dant representations.

PGCN-TCA Yang et al. [14] proposed Pseudo Graph
Convolutional Networks with Temporal and Channel-wise
Attention (PGCN-TCA), which are GCNs that use a learn-
able matrix in place of a fixed normalized adjacency matrix
in order to capture dependencies between distant joints that
are not connected in addition to capturing structural infor-
mation provided by joints directly connected through bones.

Sem-GCN Ding et al. [15] proposed Semantics-guided
Graph Convolutional Networks (Sem-GCN), which are
GCNs that use a structural graph extraction module, an ac-
tional graph inference module, and an attention graph iter-
ation module in order to aggregate L-hop joint neighbour-
hood information as a means of capturing action-specific
latent dependencies.

Mix-Dimension Peng et al. [[16] proposed Graph Convo-
lutional Networks that, instead of introducing expensive dy-
namic graph generation paradigms, build GCNs on a Rie-
mann manifold defined via the Poincaré geometry to better
model the latent anatomy of the structure data. Different
dimensions of the optimal projection in the Riemann space
are mixed on the manifold, which provide an efficient way
to explore the dimensions for each ST-GCN layer.
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Figure 3. Illustration of the ST-CTR pipeline

PA-ResGCN-B19 Song er al. [17] proposed Residual
Graph Convolutional Networks (ResGCN), which are
GCNs that employ early fused Multiple Input Branches
(MIB) along with Part-wise Attention (PartAtt) blocks in
order to capture enriched skeleton features that allow the
bottleneck-structured ResGCNs to discover essential joints
over whole action sequences.

Dynamic GCN Ye et al. [18] proposed Dynamic Graph
Convolutional Networks (Dynamic GCN), which are GCNs
that use stacked Context-encoding Networks (CeN) to
learn skeleton topology by incorporating global contex-
tual features from the remaining joints. Dynamic GCNs
achieve state-of-the-art performance on the NTU RGB+D
60 dataset with ~ 2 - 4 x fewer FLOPs than other methods.

ST-TR Plizzari et al. [[1], as mentioned earlier, propose
Spatial-Temporal Transformer Networks (ST-TR), which
are GCN-based transformer networks that model dependen-
cies between joints using the Transformer self-attention op-
erator. Spatial and Temporal Self-Attention modules are
used to capture intra-frame interactions and correlations
among different body parts, which are then combined into a
two-stream network to perform action recognition.

5. Spatial-Temporal Context-Aware Trans-
former Network (ST-CTR)

As illustrated in Fig. [3] the Spatial-Temporal Context-
Aware Transformer Network (ST-CTR) pipeline consists of
three (four including the pose estimation model) key models
that together, perform action recognition. The implementa-
tion of ST-CTR is heavily based on that of ST-TR [7]], with
the same Spatial Transformer Stream (S-TR) module. The

Temporal Transformer Stream (T-TR) module is modified
to incorporate the contextual embeddings obtained from the
MSAF model. The S-TR and T-TR blocks are stacked to-
gether and the stream outputs are then fused together by
summing up their softmax output scores to obtain the final
prediction, as detailed in [9}[10].

Pose estimation model Given that our initial goal was to
perform action recognition on raw RGB video data, we de-
cided to use a pose estimation model to generate the skele-
tons from the video frames, which would then be fed into
the ST-CTR model. Following the official implementation
of ST-GCN, we used OpenPose [[19], an open source library
that performs multi-person pose estimation on video input.
However, given that OpenPose is a pre-trained model,
it resulted in generating noisy skeletons. As such, we de-
cided to use the ground-truth skeletons provided in the NTU
RGB+D 60 dataset for the ST-CTR model as it led to a sig-
nificant performance boost at the cost of being unable to
perform action recognition on RGB video data. Further-
more, the state-of-the-art methods mentioned in the pre-
vious section all use the provided ground-truth skeletons,
which was another factor in our decision to avoid using a
pose estimation model as we wanted to fairly evaluate the
considered methods without a pose estimation bottleneck.

Contextual Embedding model One of the key factors
that enables ST-CTR to capture global contextual infor-
mation from video frames through the Transformer atten-
tion mechanism is the contextual embedding model. We
made use of the Multimodal Split Attention Fusion (MSAF)
[20] module in order to generate the context vectors. The
MSAF module splits the video and skeleton modalities into
channel-wise equal feature blocks and generates a joint rep-



resentation that is used to then generate soft attention for
each channel across the feature blocks. An I3D model [21]]
is used for the video stream whereas a HCN model [22] is
used for the skeleton stream. Two MSAF modules are de-
ployed, one at an intermediate-level in both networks and
one at a high-level in both networks. The former mod-
ule uses an early fusion style using 64 channels per block
and is inserted between the 3rd Inception layer of the I3D
model and the Conv5 outputs of the HCN model for mixing
the two modalities. The latter uses a late fusion style us-
ing 256 channels per block and is inserted between the last
Inception layer in the 13D model and the FC8 layer in the
HCN model for high-level feature recalibration as detailed
in [20]. After extensive hyperparameter tuning, we found
that a suppression power of A = 0.5, which is the default
suppression power used in [20], yields the best results for
both modules. Finally, the final embedding outputs from
both the I3D model and HCN model are averaged together
to obtain the contextual embedding.

SSA and S-TR The Spatial Self-Attention (SSA) mod-
ule applies self-attention within each frame (i.e. skeleton)
to extract low-level features that capture relations between
body parts [7]. The correlations between each pair of joints
are computed independently as illustrated in Fig. ]

SSA Module

Spatial Self-Attention

Figure 4. Spatial Self-Attention (SSA) module [7]

Formally, given a frame at time ¢, for each node v,; of the
skeleton, a query vector gt € R%, a key vector kf € Rk,
and a value vector v¢! € R? are computed by applying
trainable linear transformation to the node features n} €
RCn with parameters that are shared across all the nodes.
A query-key dot product is then applied to obtain a weight
ap; = q;- kzz»—r € R, Vt € T for each pair of nodes (v¢;, vy;)
that represents the strength of the correlations between the
two nodes. The resulting score afj is then used to weight
each joint value v%. The new embedding 2z} € R for
node v; is then computed as a weighted sum of each each
of the joint values as follows:

¢
ot .

¢ ij ¢

x; = E softmax; () v;
J Ve

Multi-headed attention is applied by repeating this embed-
ding extraction process [V}, times, each time with a different
set of learnable parameters. The set (zf,,..., z!;) of em-
beddings that are obtained for node v;; is then combined
with a learnable transformation concat(zt,, ..., zt,) - W,
to obtain the output features of SSA. Finally, these are then
passed to a 2D convolution module with kernel K; on the
temporal dimension (TCN) [1] in order to extract tempo-
rally relevant Spatial Transformer Stream (S-TR) features
following:

S-TR(z) = Convap1xk,)(SSA(x))

TSA and T-TR The Temporal Self-Attention (TSA)
module extracts inter-frame relations between the same
nodes in time to learn how to correlate frames across time
[7]. Each single joint is considered to be independent and
correlations between frames are computed by comparing
the change in the joint embeddings along the temporal di-
mension as illustrated in Fig. [5]
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Figure 5. Temporal Self-Attention (TSA) module [7]. The imple-
mentation of the TSA module is symmetrical to that of the SSA
module, with the only difference being that the V dimension cor-
responds to the T dimension and vice versa.

The formulation of the TSA module is symmetrical to
that of the SSA module:

t o,
ap, =q; - k,NveV z) = ;softmaxu (\/i) v,

where vy; and v,,; correspond to the same joint v in two dif-
ferent instants ¢ and u, o}, € R is the correlation score,
q: € R% is the query associated with v;;, k', € R% and
vi € R% are the key and value associated with v,; (all
computed using trainable linear transformations as in SSA),
and zi € RCut is the resulting node embedding. Fur-
thermore, multi-headed attention is then applied in TSA as
in SSA. Similar to the S-TR stream, inside each Temporal
Transformer Stream (T-TR) layer, a standard Graph Convo-
lution (GCN) [l1]] sub-module is followed by the TSA mod-
ule as detailed in [7]. Additionally, in order to incorporate



the contextual embeddings generated by our contextual em-
bedding model, we combine the outputs of the GCN module
with the outputs of the MSAF module using a linear layer
as follows:

T-TR(z) = TSA(GCN (z), MSAF(z))

Other methods such as summing, averaging, concatenating
the outputs of the GCN module and those of the MSAF
module were considered. However, we found that using a
linear layer to combine the two outputs resulted in the best
performance due to the higher expressive power of linear
layers [23]].

6. Experiments

Experimental Setup The ST-CTR model is trained using
a PyTorch framework [24] for a total of 120 epochs with
a batch size of 32. After experimenting with several opti-
mizers ranging from first-order stochastic optimizers such
as SGD [25]] to adaptive learning rate optimizers such as
Adam [_26], we found that SGD leads to faster convergence
early on while maintaining training stability later on dur-
ing gradient descent and as such, we decided to employ an
SGD optimizer to train ST-CTR with an initial learning rate
of 0.1 that is decayed by a factor of 10 at epochs 60 and 90.
This learning rate schedule has been shown to lead to the
best performance empirically by [LO].

Additionally, in accordance to the experiments per-
formed in [7l], we decided to use DropAttention to avoid
overfitting. DropAttention [27] is a dropout technique used
to regularize attention weights in Transformers by randomly
dropping columns of the attention matrix. We found that
using DropAttention allowed ST-CTR to gain a signifi-
cant performance boost, especially on the NTU RGB+D
60 Cross-View (X-view) benchmark as the model would
be able to better generalize the same action across differ-
ent views. Furthermore, given that [28] found that using 8
multi-head attention heads along with query (d,), key (dx),
and value (d,) embedding dimensions of 0.25 x C\,; in
each layer was sufficient in order to achieve state-of-the-
art performance, we decided to use the same hyperparam-
eters. The output dimensions obtained from the MSAF
model were also set to the same dimensions in order to al-
low the Temporal T-TR module to easily incorporate the
global contextual embeddings from the video frames.

As for the ST-CTR architecture itself, we found that us-
ing the hyperparameters tuned by [7] yielded the best per-
formance; Each of the S-TR and T-TR streams are com-
posed of 9 layers with channel dimensions of 64 for the
first three layers, 128 for the intermediate three layers, and
256 for the last three layers. Additionally, batch normal-
ization is applied to the input joint and video data along
with a global average pooling layer that is applied before

the softmax classifier. Finally, each stream is trained using
the standard cross-entropy loss.

Qualitative Results The confusion matrices of our ST-
CTR model on the NTU RGB+D 60 test set Cross-Subject
(X-Sub) and Cross-View (X-View) benchmarks are given in
Fig. [6] Given the high dimensionality of output classifica-
tion space (60 action classes), only the first 30 action classes
are included in the confusion matrices, in accordance to the
evaluation performed by [7]. Further qualitative evaluation
of each of the components of the ST-CTR pipeline can be
found in the next section.

Quantitative Results In accordance to the quantitative
analysis performed in [} [7], we report the NTU RGB+D
60 test set Cross-Subject (X-Sub) and Cross-View (X-View)
top-1 classification accuracies of our ST-CTR model and the
considered state-of-the-art action recognition methods. The
quantitative evaluation results are given in Table. [I]

Method | X-Sub | X-View |
ST-GCN 77.5% | 83.3%
PeGCN 85.6% | 93.4%
RA-GCN 87.3% | 93.5%
PGCN-TCA 88.0% | 93.5%
Sem-GCN 86.2% | 92.4%
Mix Dimension 87.2% | 93.4%
PA-ResGCN-B19 | 88.5% | 93.5%
Dynamic GCN 87.3% | 88.6%
ST-TR 85.9% | 91.1%
ST-CTR (ours) 88.7% | 93.6%

Table 1. NTU RGB+D 60 test set top-1 classification accuracies

7. Discussion

Contextual Embedding Model Based on the qualitative
evaluation in the previous section and from the confusion
matrices, we observe that the main source of classification
errors across both the Cross-Subject (X-Sub) and Cross-
View (X-View) benchmarks creep in from misclassifica-
tion between the “reading” and “writing” classes. Delving
deeper, we found that this misclassification error between
the “reading” and “writing” classes was worse across all
the other state-of-the-art human action recognition methods
considered. The main source of this error can be attributed
to the fact that the skeleton data, as observed in Fig. [/} on
its own, does not convey enough information to the models
to accurately distinguish one action from the other.

Both actions are performed by a standing human with
minimal hand movement and as such, the skeletons are al-
most impossible to classify, even by a human being. How-
ever, viewing the video frames themselves, we observe that
subtle movements and nuanced interactions with the pen
and paper allow human beings to tell the actions apart. This
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Figure 7. Samples from the NTU RGB+D 60 dataset [[11]]

was one of our primary motivations for using a contex-
tual embedding model as MSAF allows ST-CTR to capture
global context features from the video frames themselves,
thus, allowing ST-CTR to not only outperform the other
state-of-the-art action recognition methods when it comes
to variations in the setup (such as lighting, etc.), but also
when it comes to classifying actions among which the dif-
ferences are too subtle to distinguish them based on the
skeleton sequences alone.

Ablation Study We analyze the performance gain
achieved by each individual component of the ST-CTR
pipeline through an ablation study, given in Table. 2}

We observe that S-TR and T-TR, by themselves, do not
perform well on either of the benchmarks. Note that no
further hyperparameter tuning was performed on either the
S-TR or T-TR components during the ablation study and as
such, higher performance with either of these components
alone is possible with careful hyperparameter tuning.

| Components in the pipeline

| X-Sub [ X-View |

S-TR 78.6% | 80.7%
T-TR 78.4% | 80.5%
MSAF + T-TR 82.1% | 85.8%
S-TR + T-TR 85.9% | 91.1%
MSAF + S-TR + T-TR (ST-CTR) | 88.7% | 93.6%

Table 2. Ablation study of the ST-CTR pipeline

S-TR and T-TR, when combined together, yield a signif-
icant performance gain across both the benchmarks. While
this can be partially attributed to the fact that the hyper-
parameters were tuned to use both components together, it
can also be attributed to the fact that both spatial and tempo-
ral features are crucial to a task such as action recognition.
Thus, removing either of these components leads to a large
drop in performance.

Including the MSAF contextual embedding model in
the T-TR stream also yields a significant performance gain
across both benchmarks. As mentioned earlier, this can be
attributed to the fact that MSAF generates global contex-
tual features from the video frames themselves, which al-
lows the model to not only generalize better to different se-
tups, but to distinguish between actions whose skeleton data
alone does not allow for accurate classification due to sub-
tle differences in motion. Note that since the MSAF gener-
ated contextual embeddings are incorporated into ST-CTR
through the T-TR stream, an ablation study that removed
T-TR but retained MSAF was not possible.

Finally, as mentioned earlier, our initial goal was to per-
form human action recognition on raw RGB video data. We
made use of OpenPose, a pre-trained pose estimation model



to generate the skeletons from the raw RGB video data.
We found that using the skeletons generated by OpenPose,
the ST-CTR model yielded top-1 classification accuracies
of 41.6% and 45.9% on the NTU RGB+D 60 test set Cross-
Subject (X-Sub) and Cross-View (X-View) benchmarks, re-
spectively. This significant drop in performance can be at-
tributed to the fact that OpenPose is a pre-trained pose es-
timation model and thus, generates skeletons that are noisy
given the raw RGB video data alone. Therefore, we decided
to use the provided NTU RGB+D 60 ground-truth skele-
tons for our model and as such, the ST-CTR pipeline only
consists of the MSAF, the S-TR, and the T-TR modules, as
given in the last row of Table. [2]

Spatial and Temporal Self-Attention As introduced ear-
lier, the SSA module performs the spatial self-attention
mechanism in the S-TR component whereas the TSA mod-
ule performs the temporal self-attention mechanism in the
T-TR component. In order further examine the effect of
each of these mechanisms on the overall model, we quali-
tatively evaluate the outputs of the SSA and TSA modules
with respect to the inputs to each of the modules.

The spatial attention maps learned by the SSA module
across different layers for two action classes: “taking a
selfie” and “put on a hat”, are visualized in Fig. [§]

R R R

layerl layer3 layer8 layer10

taking a selfie

put on a hat

Figure 8. Spatial attention maps learned by the SSA module. Node
sizes represent the importance of the corresponding joints [11]]

Based on the sizes of the nodes, we observe that the
SSA module focuses on the joints in the hands and the
head, which suggests that the features from these joints play
pivotal roles in enabling accurate classification. This also
makes intuitive sense because these joints are prone to more
motion when it comes to performing the taking a selfie”
and “’put on a hat” actions. Furthermore, note that the spa-
tial attention is not evident from the sizes of the nodes in the
lower layers. This can be attributed to the fact that the re-
ceptive fields of the lower layers are relatively smaller, thus
making it harder to learn good attention maps [L1].

The temporal attention weights learned by the TSA mod-
ule across different frames for two action classes: “’taking a

—— selfie-layer5
selfie-layer7
—— throw-layer5

T — T T T T
0 10 20 30 40 50
Attention value

bEEERRNRRER

Taking a selfie

METTS

Figure 9. Temporal attention weights learned by the TSA module
along with their corresponding skeletons [[11]

Throw

selfie” and "throw”, are visualized in Fig. [0 For the “taking
a selfie” action, we observe that the TSA module focuses
more on the movement of the arm as it rises in the fifth
layer while it focuses more on the final posture of the body
in the seventh layer. As for the “throw” action, we observe
that TSA module focuses more on the arm when the hands
are in a lower position. This makes intuitive sense as these
are the frames that convey the most information regarding
the action being performed, thus, allowing the TSA module
to focus on frames that are crucial to action recognition.

8. Conclusion

In this paper, we introduced a novel context-aware
skeleton-based human action recognition model: the
Spatial-Temporal Context-aware Transformer (ST-CTR).
Through our extensive experiments, we showed that ST-
CTR outperforms the state-of-the-art action recognition
methods across both the NTU RGB+D 60 Cross-Subject
(X-Sub) and Cross-View (X-View) benchmarks. Further-
more, we showed that the Spatial and Temporal Self-
Attention modules enable the model to focus on critical
parts of the skeleton for action classification across the
spatial and temporal dimensions, respectively. Finally, we
showed that the ST-CTR model is able to incorporate global
contextual features from the video frames when classifying
actions, thus, enabling ST-CTR to distinguish among action
classes with subtle differences in skeleton features.

Potential future directions of this work include, but are
not limited to: action prediction using the ST-CTR trans-
former to predict skeletons for future frames given a set of
past skeleton sequences, improving pose estimation models
to generate better skeletons to enable action recognition on
raw RGB video data, and better overfitting mitigation in the
spatial processing of the skeleton graphs using techniques
such as DropEdge [29] and DropGraph [30].
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