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Abstract

Supervised Deep Learning based monocular methods
are among the state-of-the-art methods for estimating depth
maps from from single images. However, they still lack
in performance in comparison to stereo depth estima-
tion methods that estimate depth maps from stereo im-
age pairs. Unfortunately, due to the complexity of set-
ting up stereo systems, monocular depth estimation meth-
ods are still the go-to approach when it comes to depth
estimation, despite their inferior performance in compar-
ison to stereo depth estimation methods. We propose a
novel pipeline to make use of stereo depth estimation meth-
ods through the use of Generative Adversarial Networks
(GANs). Our single-image stereo depth estimation pipeline
makes use of a GAN (DepthGAN) to generate a ”plau-
sible” depth map given a single input image, followed
by the generation of a stereo counter-part (depth2stereo)
to the original input image given the ”plausible” depth
map, followed by the use of another GAN (StereoDepth-
GAN) to generate the final depth map given the stereo im-
age pair. The DepthGAN and StereoDepthGAN, pretrained
on the KITTI and Cityscapes datasets and fine-tuned on
the NYU Depth V2 dataset, enable our pipeline to out-
perform current state-of-the-art monocular depth estima-
tion methods, as examined in this paper through our exten-
sive experiments. The source code is available on GitHub:
https://github.com/sharanramjee/
single-image-stereo-depth-estimation

1. Introduction
Depth information is crucial in understanding the 3D

geometry of a scene. Traditional depth estimation meth-
ods, like stereo vision matching and structure from motion,
require multiple viewpoint images as they rely on feature
correspondences across these images for computing depth
maps. Extracting depth from a single image i.e. monocu-
lar depth estimation is an ill-posed problem that makes it
very challenging. Recent advances in Artificial Intelligence
(AI) have led to the development of Deep Neural Network
(DNN) based monocular depth estimation techniques that

have achieved promising results. In particular, the use of
Generative Adversarial Networks (GANs) [8] for monocu-
lar depth estimation has gained widespread popularity.

However, recent studies by Smolyanskiy et al. [18] and
Tosi et al. [19] show that the performance of GAN-based
monocular depth estimation methods are still inferior to
those of GAN-based stereo depth estimation methods with
the caveat that stereo depth estimation methods require a
stereo pair of input images for depth estimation. The com-
plexity of a stereo camera setup for stereo depth estima-
tion has deterred the use of stereo depth estimation methods
in real-world applications and has thus led to a widespread
adoption of monocular depth estimation methods [3], de-
spite their relatively inferior performance. In order to ad-
dress this issue, we propose a novel pipeline for monocular
depth estimation in order to generate stereo image pairs for
improved depth estimation through the use of GAN-based
stereo depth estimation methods.

2. Related Work
Several papers have been published aimed at solving

depth estimation problems using deep learning. Notably,
Laina et al. [11] propose a convolutional architecture that
encompasses residual learning to model the ambiguous
mapping between monocular images and depth maps. Zhou
et al. [22] use an unsupervised learning framework for the
task of monocular depth and camera motion estimation
from unstructured video sequences. An end-to-end learn-
ing approach is used with view synthesis as the supervisory
signal. Godard et al. [6] propose a CNN to learn to perform
single image depth estimation despite the absence of ground
truth depth data. Exploiting epipolar geometry constraints,
disparity images are generated by training the network with
an image reconstruction loss. Liu et al. [13] present a DNN
for piece-wise planar depth map reconstruction from a sin-
gle RGB image. The proposed end-to-end DNN learns to
directly infer a set of plane parameters and corresponding
plane segmentation masks from a single RGB image. Wat-
son et al. [20] generate plausible disparity maps from single
images which are used in a carefully designed pipeline to
generate stereo training pairs.
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3. Problem Statement
We use existing implementations of the DepthGAN [9],

depth2stereo algorithm [14], and StereoDepthGAN [15]
and employ transfer learning (pretrained on the KITTI [5]
and Cityscapes [4] datasets) to further fine-tune the model
parameters using the train set of the NYU Depth V2 dataset.
The training curves for fine-tuning the discriminator, gener-
ator, and image reconstruction losses are reported for both
the DepthGAN and the StereoDepthGAN in Sec. 5.3.

For qualitative evaluation, the error maps (i.e. pixel-
wise differences) between the generated depth maps and
the ground truth depth maps on the test set are reported
in Sec. 6.1. For quantitative evaluation and performance
comparison with other state-of-the-art monocular depth es-
timation methods, we use a set of common metrics [9]: Ab-
solute Relative Distance (ARD), Squared Relative Distance
(SRD), Root Mean Squared Error (RMSE), and log Root
Mean Squared Error (log RMSE), as reported in Sec. 6.2.

While we expect the other monocular depth estimation
methods to outperform the DepthGAN in terms of the plau-
sible/intermediate depth maps generated, we expect the
entire single-image stereo depth estimation pipeline (out-
put from the StereoDepthGAN) to outperform these other
methods in terms of the final depth maps generated.

Finally, in order to evaluate the performance gain
achieved as a result of in-domain training, we also report
both the qualitative and quantitative results of the pipeline
before and after fine-tuning on the train set of the NYU
Depth V2 dataset.

4. Technical Approach
The pipeline for generating the depth maps consists of

three components: the DepthGAN [9], the depth2stereo
[14] algorithm, and the StereoDepthGAN [15]. The Depth-
GAN takes in an RGB image as input to generate a plau-
sible depth map, which is then fed into the depth2stereo
algorithm along with the initial RGB input image in order
to generate a right stereo counterpart. Finally, the stereo
image pair is fed into the StereoDepthGAN to generate the
final depth map as illustrated in Fig. 1.

4.1. DepthGAN

Groenendijk et al. [9] use the reconstruction-based archi-
tecture for depth estimation developed by Godard et al. [6]
for constructing the DepthGAN and extend it with an adver-
sarial discriminator through the formulation of the problem
of depth estimation as an image reconstruction task, where
a generator network takes a single left view image as input
and gives the left-to-right disparity as output. More for-
mally, the generatorG used the left image IL to reconstruct
both the left ÎL and the right ÎR image. The warping func-
tion fw [21] is then used to reconstruct the left and right

stereo pairs using the two disparities outputted by the gener-
ator G: left-to-right disparity dR and right-to-left disparity
dL. Groenendijk et al. [9] emphasize that a good genera-
tor G should predict dL and dR such that the reconstructed
images ÎL and ÎR are close to the original image pair IL

and IR as measured by the following image reconstruction
losses:

L1 loss to minimize the absolute per-pixel distance:

Ll
L1 =

1

N

∑
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||I l
ij − Î

l

ij || (1)

Structural similarity (SSIM) reconstruction loss to mea-
sure the perceived quality:

Ll
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where SSIM(·, ·) is the Structural Similarity Index as de-
fined by Godard et al. [6].

Left-Right Consistency Loss (LR) to enforce the con-
sistency between the predicted left-to-right and right-to-left
disparity maps:

Ll
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Disparity Smoothness Loss to enforce smooth disparities
i.e. small disparity gradients:
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The DepthGAN generator G outputs scaled disparities
at intermediate layers of the decoder when it it upsamples
from the bottleneck layer and for each subsequent scale, the
height and width of the output image is halved. The recon-
struction loss is computed at each scale and the final recon-
struction loss is a combination of the losses at the different
scales s:

Ls = γL1LL1 + γSSIMLSSIM+

γLRLLR + γdispLdisp

(5)

Lrec =

3∑
s=0

Ls (6)

where the γ’s weight the influence of each loss component.
The DepthGAN discriminator D is used to discern be-

tween the real IR and fake ÎR right images. For adversarial
training, Groenendijk et al. [9] combine the reconstruction
loss Lrec with vanilla GAN loss:

LG
V = −E[logD(ÎR)] (7)
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Figure 1. Single-image stereo depth estimation pipeline

LD
V = −E[logD(IR) + log(1−D(ÎR))] (8)

Finally, the generator is trained with the following loss:

L = Lrec + φGLG
V (9)

where φG = 0.1 is the GAN loss weight.

4.2. depth2stereo

The depth2stereo algorithm [14] is a row-wise order-
invariant algorithm that uses the premise that objects pop-
ping out of the image as observed in the depth map are far-
ther apart from each other in comparison to objects sinking
into the image. The algorithm operates in two steps: the tear
identification step followed by the tear interpolation step.

In the tear identification step, the scanline is searched for
instances of pixel ranges in which tearing (shifting when
generating the right stereo counter-part) may occur. In gen-
eral, tears will occur along regions where depth map inten-
sities increase over the entire pixel range and this step is
implemented to identify ranges of pixels along the scanline
where the intensities strictly decrease from right to left. The
shifted result is then obtained using a standard shift where
all torn pixels are assigned an intensity of 0.

This is followed by the tear interpolation step, where the
shifted image is corrected for areas where a tear has left an
unintended blank pixel. Two pointers: a left pointer point-
ing to the pixels in the original image and a right pointer
pointing to the shifted image traverse across the scanline
from left to right. A tear is identified when the pixel val-
ues do not match and if this is the case, the empty pixel is
filled with the pixel value from the left pointer i.e. the cor-
responding pixel from the original image. In this way, the

depth2stereo algorithm is able to generate a shifted right
stereo counterpart to an inputted left image and its corre-
sponding depth map.

4.3. StereoDepthGAN

Pilzer et al. [15] target at estimating a disparity map
given a pair of stereo images through the StereoDepthGAN,
which performs an unsupervised adversarial depth estima-
tion using cycled generative networks. Similar to the Stere-
oGAN, the generator G of the StereoDepthGAN uses the
warping function fw [21] is used to generate or reconstruct
the left ÎL and right ÎR stereo image pair using the esti-
mated left-to-right dR and right-to-left dL disparity maps
given a left IL and right IR stereo image pair as inputs.
Here, the generator network G consists of two generative
sub-networks Gl and Gr that exploit the same convolu-
tional encoder-decoder architecture detailed by Pilzer et al.
[15]. Gl is used to produce two distinct left-to-right dispar-
ity maps dRl and dRr given the left IL and right IR stereo
input images, respectively.

dRl = Gl(I
L) and dRr = Gl(I

R) (10)

The two disparity maps dRl and dRr are concatenated and
passed through a 1 × 1 convolution layer to obtain an en-
hanced disparity map dR, using which, the synthesized right
image ÎR is generated using the warping function fw. Mov-
ing forward, in order to establish the closed loop structure
of cycled generative networks, the generative sub-network
Gr is used to produce two distinct right-to-right disparity
maps dLl and dLr given the original left IL and synthesized
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right Î
R

image, respectively.

dLl = Gr(I
L) and dLr = Gr(Î

R
) (11)

Similarly, dLl and dLr are used to obtain an enhanced dis-

parity map dL, using which ÎL is generated. Unlike the
DepthGAN, the StereoDepthGAN merely the L1 loss for
the generator image reconstruction loss:

Lrec = ||IR − fw(dR, IL)||+ ||IL − fw(dL, ÎR)|| (12)

Pilzer et al. [15] also apply an L1 consistence loss to con-
strain the generated depth maps dL and dR on each other:

Lcon = ||dL − fw(dL, dR)|| (13)

The StereoDepthGAN discriminator D, similar to the
generator D, consists of two sub-networks Dl and Dr. Dl

is used to discern between the original IL and the synthe-
sized ÎL left image while Dr is used to discern between the
original IR and the synthesized ÎR right images as given
by the adversarial objective:

Lgan = EIL∼p(IL)[logDl(I
L)]+

EIR∼p(IR)[log(1−Dl(fw(d
L, ÎR)))]+

EIR∼p(IR)[logDr(I
R)]+

EIL∼p(IL)[log(1−Dr(fw(d
R, IL)))]

(14)

Finally, the full optimization objective is given by:

L = γrecLrec + γganLgan + γconLcon (15)

where the γ’s weight the influence of each loss component.

5. Experiments

5.1. Dataset

NYU Depth V2 dataset [17] provides RGB images and
corresponding depth maps for different indoor scenes cap-
tured at a resolution of 640 × 480 using Microsoft Kinect.
The training dataset contains 120K samples. We train our
method on a 50K subset and evaluate model on the official
test split containing 654 samples. Missing depth values are
filled using the inpainting method by Levin et al. [12]. The
depth maps have an upper bound of 10 meters. All experi-
ments and comparative analysis of our GAN based depth es-
timation pipeline with other baseline models are performed
on the NYU Depth V2 dataset.

Figure 4. Sample example from the NYU depth V2 dataset

5.2. Baselines

DenseDepth [1] is a convolutional neural network for
computing a high-resolution depth map given a single RGB
image with the help of transfer learning. Following a stan-
dard encoder-decoder architecture, features extracted are
leveraged using high performing pre-trained networks when
initializing encoder along with augmentation and training
strategies.

MonoDepth2 [7] uses a combination of appearance
matching loss to address the problem of occluded pixels
that occur when using monocular supervision, a simple
automasking approach to ignore pixels where no relative
camera motion is observed in monocular training, and a
multi-scale appearance matching loss that performs all im-
age sampling at the input resolution.

SGDepth [10] is a self-supervised depth estimation
method to deal with moving objects. It uses cross-domain
training of semantic segmentation and depth estimation
with task-specific network heads, together with a seman-
tic masking scheme to prevent moving objects from con-
taminating the photometric loss, and a detection method for
frames with non-moving objects.

MiDaS [16] is based on novel loss functions that are
invariant to the major sources of incompatibility between
datasets. Implementation is based on optimized strategies
for mixing datasets during training, using high-capacity en-
coders.

5.3. Experimental Setup and Fine-Tuning

Pre-trained models of the DepthGAN and StereoDepth-
GAN, whose implementations are available in their respec-
tive papers, were used for the single-image stereo depth es-
timation pipeline. For both implementations, hyperparam-
eter tuning was done using an exhaustive grid search [2].
However, we found that the default set of hyperparameters
that were empirically determined by Groenendijk et al. [9]
for the DepthGAN and by Pilzer et al. [15] for the Stere-
oDepthGAN work best and thus, these were the sets of hy-
perparameters that were used for fine-tuning each of the re-
spective models.

We leveraged transfer learning using these pre-trained
models, which were both pre-trained on the KITTI [5] and
the Cityscapes [4] datasets in order to further fine-tune the
models on the train set of the NYU Depth V2 dataset. The
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Figure 2. DepthGAN fine-tuning losses

Figure 3. StereoDepthGAN fine-tuning losses

DepthGAN and StereoDepthGAN generators and discrim-
inators were fine-tuned locally on a GeForce GTX 960M
GPU with an initial learning rate of 0.1 using the Adam and
SGD optimizers, respectively. The fine-tuning discrimina-
tor loss (D-Loss), generator loss (G-Loss), and image recon-
struction loss of the DepthGAN and the StereoDepthGAN
are given in Fig. 2 and Fig. 3, respectively.

6. Results
In order to justify using the depth2stereo algorithm and

using the generated stereo counter-part to generate the final
depth map, we report the qualitative and quantitative results
for both the plausible depth map (output of DepthGAN) and
the final depth map (output of StereoDepthGAN). Further-
more, we also report the results of the plausible and final
depth maps before and after fine-tuning in order to observe
the performance gain achieved as a result of in-domain fine-
tuning on the NYU Depth V2 dataset.

6.1. Qualitative Evaluation

The error maps (i.e. pixel-wise differences) for some ex-
ample images from the NYU Depth V2 test set between the
ground truth and generated depth maps for our pipeline and
other state-of-the-art monocular depth estimation baselines

for qualitative evaluation are given in Fig.5.
Here, although the differences are subtle, we observe

that the final depth maps generated by the pipeline after
fine-tuning are closer to the ground truth depth maps and
smoother near edges in comparison to the depth maps gen-
erated by the baselines. This can be attributed to the various
image reconstruction losses that are enforced by the Depth-
GAN and StereoDepthGAN.

6.2. Quantitative Evaluation

We measure the performance of our pipeline and other
state-of-the-art monocular depth estimation baselines as
measured by a set of commonly used depth estimation met-
rics [9] on the NYU Depth V2 test set: Absolute Relative
Distance (ARD), Squared Relative Distance (SRD), Root
Mean Squared Error (RMSE), and log Root Mean Squared
Error (log RMSE). Lower values are better for all of these
metrics and the results are given in Table. 1.

Here, we observe that while some baselines outperform
both the plausible and final depth map generated by the
pipeline before fine-tuning, the final depth map generated
by the pipeline after fine-tuning outperform all the state-of-
the-art monocular depth estimation baselines across all the
metrics considered on the NYU Depth V2 test set.
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Figure 5. Qualitative evaluation of our pipeline and baselines

Method ARD SRD RMSE log RMSE
DenseDepth [1] 0.74 0.56 0.74 1.48
MonoDepth2 [7] 0.534 0.381 0.612 1.521
SGDepth [10] 0.550 0.345 0.584 1.027
MiDaS [16] 0.024 0.015 0.027 0.057
Ours - Plausible 0.792 0.646 0.802 2.560
Ours - Final 0.745 0.567 0.751 1.499
Ours - Plausible (After fine-tuning) 0.025 0.002 0.027 0.056
Ours - Final (After fine-tuning) 0.019 0.013 0.022 0.046

Table 1. Quantitative evaluation of our pipeline and baselines

7. Conclusion

Through the extensive experiments conducted, we ob-
serve that indeed, stereo depth estimation methods are supe-
rior to monocular depth estimation methods. The pipeline
leverages the generative power of GANs to reinforce im-
age reconstruction losses that lead to estimation of better
depth maps in comparison to the baselines considered, both
in the qualitative and quantitative sense. Another advantage
of the single-image stereo depth estimation pipeline is that it
does not require stereo image pairs for training. Finally, the
pipeline is also modular, where the DepthGAN and Stere-
oDepthGAN and be swapped out for other monocular and

stereo depth estimation methods, respectively.

However, the pipeline suffers from two main disadvan-
tages. It makes use of Deep Learning based depth estima-
tion methods in a sequential fashion, which makes depth
estimation computationally expensive using the pipeline,
and thus, it is not suitable for low-power mobile devices
with limited computational power. Furthermore, since the
pipeline uses a three-step sequential process that cannot be
parallelized, it suffers from high inference times in compar-
ison to other single-step Deep Learning based depth estima-
tion methods, which makes it infeasible for use in scenarios
where latency and fast inference is critical.
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8. Future Work
Some of the future work that can be worked on in or-

der to improve the performance of the pipeline are to in-
vestigate other components of the pipeline. Training GANs
is computationally expensive and slow and replacing them
with other Deep Learning based methods could lead to im-
proved fine-tuning, especially in scenarios such as online
learning, where adapting to new domains faster is useful.
Furthermore, other replacements for the depth2stereo al-
gorithm can be investigated. In the current state of the
pipeline, the DepthGAN and the StereoDepthGAN have to
be trained individually. If a differentiable implementation
of the depth2stereo algorithm can be developed, then the
entire pipeline can be trained as a whole, where the gra-
dients can flow through the entire pipeline during training,
thus simplifying the training or fine-tuning process.
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