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I. INTRODUCTION

Plant diseases devastatingly reduce the potential crop
yield by an average of 40%, and up to 100% in the
developing world. The detection of plant diseases remains
difficult due to the lack of infrastructure and expertise. As
such, several applications have been developed for diagnosis
of plant diseases based on the success of deep learning
techniques. However, these applications suffer from a drastic
performance degradation when tested in practical settings
and fail to generalize to real world data. This degradation
can be attributed to the severe class imbalance (as observed
in figure 1) and lack of statistical diversity of the back-
ground images in the available datasets, in particular, the
PlantVillage dataset, which is the state-of-the-art for plant
leaf disease classification.

Fig. 1: Class imbalance in PlantVillage dataset

We investigate the effectiveness of various data augmenta-
tion methods in improving the generalization performance of
plant disease classifiers. In particular, we propose the use of
Neural Style Transfer (NST) to generate images of diseased
plants from healthy plants as a data augmentation method for
improving the generalization performance of plant disease
diagnosis. In addition, we investigate the effectiveness of
NST in comparison to various conventional and GAN-based
data augmentation techniques.

The inputs to our NST data augmentation algorithm are
a set of healthy leaf content images and a single diseased
leaf style image, both belonging to the same plant species.
Our NST data augmentation algorithm will transfer the style
of the diseased leaf image to the set of healthy leaf content
images. As such, the output of the algorithm is a set of
newly generated diseased leaf images belonging to the same
disease class and species as the diseased leaf style image.
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II. RELATED WORK

A. Plant Disease Classification

Substantial prior research has been conducted on using
deep learning to perform image-based diagnosis of plant
diseases. Notably, [1] trained two deep learning models
(AlexNet and GoogleNet) on the PlantVillage dataset and
achieved a mean accuracy of 99.3%. However, their mod-
els fail to generalize well, evidenced by an accuracy of
31% when tested using a set of on-site plant images.
As previously discussed, this degradation in performance
can be attributed to the biases in the PlantVillage dataset.
Furthermore, [2] evaluated the classification performance of
different state-of-the-art deep learning models and transfer
learning strategies on the PlantVillage dataset. Most inter-
estingly, they found that deep training (fine-tuning all the
layers) of pre-trained networks yielded the best performance
results compared to shallow training (fine-tuning only the
fully-connected layers). Following their findings, we used
deep training for all of our classification models.

B. Plant Disease Data Augmentation

In the specific application of image-based plant disease
diagnosis, several papers have proposed successful dataset
augmenting methods for improving performance and gener-
alization. In particular, [3] made use of GANs and NST to
augment the PlantVillage dataset. However, the effectiveness
of their augmentation methods was evaluated on the same
problematic PlantVillage dataset, which is not a good indi-
cator of generalization performance. The work done by [4]
is considered the state-of-the-art for the problem of plant
disease classification as [4] used the latest StyleGAN to
augment the PlantVillage dataset and reported significant
improvements in generalization performance on a separate,
private, plant disease dataset, as evaluated by the state-of-
the-art plant disease classification models. However, to the
best of our knowledge, no prior work exists that has investi-
gated the impact of NST-based dataset augmentation on the
generalization performance of plant disease classifiers.

C. Attention Guided GANs

[5] proposed a novel LeafGAN model for augmenting
plant disease datasets using an attention mechanic, where
their model generated segmentation masks of the leaf that
are used to guide GAN to only transfer the disease to the leaf
regions. Their model significantly improved generalization



performance by solving the known ”bleeding” problem with
GANs where the plant disease is applied to the back-
ground of the image. Most notably, [5] showed that using
a traditional CycleGAN without an attention mechanism
for data augmentation would not improve generalization
performance due to this ”bleeding” problem.

III. DATASET AND FEATURES

A. PlantVillage

The primary dataset that was used for training and testing
is the PlantVillage [6], which contains 55448 images with
a resolution of 256 × 256, consisting of 38 plant-disease
classes. Since the deep learning classifier models were pre-
trained on ImageNet [7], each channel of the RGB images in
the PlantVillage dataset were normalized using the ImageNet
normalization parameters µ = [0.485, 0.456, 0.406] and
σ = [0.229, 0.224, 0.225]. We found that this normalization
scheme yielded the best classification performance on the
baseline model. Furthermore, all images were cropped to a
resolution of 224× 224 to match the input size of the deep
learning models. Each image in the dataset is accompanied
by a label of the form {plant species, disease} and an
associated leaf segmentation map. The PlantVillage dataset
suffers from a class imbalance, which causes significant
degradation in the performance of trained models in practical
settings.

B. Plant Pathology 2020 challenge dataset

A secondary dataset that was used for testing the gen-
eralization performance of the plant disease classifier is
the PlantPathology [8] dataset, which contains 1730 images
with a resolution of 256 × 256, consisting of 3 distinct
apple-disease classes (healthy, rust, scab). Using the same
reasoning given for PlantVillage, each channel of the RGB
images in the PlantPathology dataset were normalized using
the ImageNet normalization parameters and cropped to a
resolution of 224× 224 to match the input size of the deep
learning models. Since the PlantPathology dataset was used
exclusively to evaluate the generalization performance of the
plant disease classifier, no data augmentation was performed
on the dataset. The images in this dataset were captured
under a diverse range of angles, lighting, and distances,
making it a far more accurate measure of generalization
performance than the PlantVillage dataset.

IV. METHODS

The implementations of all the algorithms proposed and
considered in this paper are available on GitHub1.

A. Neural Style Transfer

Neural Style Transfer (NST) [9] uses a pre-trained model
to avoid the use of paired content-style images and takes
advantage of transfer learning to extract the content and style
from images. Our pre-trained model of choice for NST was

1https://github.com/sharanramjee/plant-disease-nst

the VGG19 model [10] since VGG models are unable to
capture non-robust features as well as other architectures,
which allows VGG models to perform style transfer to
produce outputs that look more correct to humans [11]. We
used the output of the last block of the VGG19 network to
extract the content of the healthy leaf image as the VGG19
model builds on top of previous layers to form complex
feature representations of the input image. In order to obtain
more robust style representations and capture multi-scale
information, we obtain feature correlations from the outputs
of all the blocks of the VGG19 model to obtain the gram
matrix that represents the style of the diseased leaf image.

The style representation is given by the gram matrix:

G(F [l](−→x )) = [F [l](−→x )][F [l](−→x )]>

where −→x denotes the image and F [l](−→x ) denotes the output
of the VGG19 network at layer l.

Our objective is to perform NST using the style of a
diseased leaf image

−→
d and the content of a healthy leaf

image
−→
h to produce a synthesized image −→x . We first

initialize −→x with noise and minimize the linear combination
of the content loss and the style loss:

LNST (
−→
h ,
−→
d ,−→x ) = αLcontent(

−→
h ,−→x ) + βLstyle(

−→
d ,−→x )

where α and β are the weights of the content and style
losses, respectively. The content loss Lcontent is the summa-
tion of content losses over the content layers (last layer of
the VGG19 network) and style loss Lstyle is the summation
of the style loss over the style layers (all layers of the
VGG19 network):

Lcontent =
∑

l∈content

w
[l]
content||F [l](

−→
h )− F [l](−→x )||22

Lstyle =
∑

l∈style

w
[l]
style||G(F

[l](
−→
h ))− G(F [l](−→x ))||22

NST, however, extracts information from the entire image,
including irrelevant information such as the background of
the style leaf image and applies this to the entire content
information, including the background of the content leaf
image, which we would like to leave untouched. Specifically,
we would like to exercise spatial control on NST in order
to extract just the relevant plant leaf pixels from both the
content image and the style image as observed in figure 2.

(a) NST (b) Masked-
NST

Fig. 2: Examples of NST and Masked-NST with black rot
disease applied to a healthy leaf

As documented by [12], this can be achieved by simply
applying a mask over the pixel locations belonging to the
leaf segments for both the content image and the style image.
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Fig. 3: Leaf mask generation pipeline

[1] generate the segmentation mask by converting the
image to grayscale, applying gaussian blur to smoothen
the edges within the leaf, applying image thresholding
with an inverted binary threshold to obtain a mask of the
leaf foreground, applying the closing (dilation followed by
erosion) image morphological operation to close small holes
in the mask, and then finally obtaining the contours of the
mask as illustrated in Fig. 3.

Fig. 4: Masked-NST disease application

The masks are applied to the content and style images in
order to extract the foreground information from both the
content and style images after passing through the VGG19
model. Finally, NST is performed as usual to apply the
disease from the diseased style image to the healthy content
image as illustrated in Fig. 4.

B. CycleGAN

CycleGAN [13] is a Generative Adversarial Network for
unpaired Image-to-Image translation. For the task of con-
verting healthy leaves (H) to diseased leaves (D), CycleGAN
learns a forward mapping G : H −→ D such that the
generated diseased leaves G(H) are indistinguishable from
the real diseased leaves D. Likewise, CycleGAN learns
the inverse mapping from diseased leaves to healthy leaves
F : D −→ H , and introduces a cycle consistency loss
to enforce that the reconstructed healthy leaf is as close
as possible to the original (F (G(H)) ≈ H and vice
versa G(F (D)) ≈ D). By doing so, CycleGAN can learn
mappings that transform healthy leaves to diseased ones
while preserving the structure and content of the original
healthy leaf, which is desirable for the task of style transfer.

V. BASELINE MODEL EXPERIMENTS AND RESULTS

In order to establish a baseline model, we evaluated a
variety of both traditional machine learning and modern
deep learning methods on the PlantVillage dataset in sections
V-A and V-B, respectively. Our evaluation metrics of choice

were: Precision, Recall, F1-score, and PlantVillage test set
accuracy. The PlantVillage dataset was divided using a
60:20:20 train-val-test split for these baseline model exper-
iments.

A. Traditional Machine Learning Methods

The use of traditional machine learning methods for plant
leaf disease diagnosis has been extensively documented
in [14] and [15]. For each classifier, we employed a K-
fold cross-validation with a K value of 10, where the
hyperparameters for each of the models were chosen using a
grid-search. We compare and contrast the performance of the
following classifiers on the PlantVillage dataset in table I:
Logistic Regression (LR) [16], Linear Discriminant Analysis
(LDA) [17], K Nearest Neighbors (KNN) [18], Decision
Trees (CART) [19], Random Forests (RF) [20], Naive Bayes
(NB) [21], and Support Vector Machines (SVM) [22].

TABLE I: Evaluation metrics of traditional ML models on
PlantVillage dataset

Evaluation Metrics
Model Precision Recall F1-score Test accuracy
LR 0.94 0.94 0.94 0.941
LDA 0.93 0.93 0.92 0.925
KNN 0.94 0.94 0.93 0.934
CART 0.92 0.92 0.92 0.916
RF 0.95 0.95 0.95 0.951
NB 0.86 0.83 0.82 0.828
SVM 0.94 0.93 0.93 0.934

While traditional machine learning methods benefit from
faster training times and are less computationally expen-
sive to train, their performances, as evaluated through the
metrics, still fall short compared to modern deep learning
methods as examined in section V-B.

B. Deep Learning Methods

Modern deep learning and neural network-based methods
have taken the agriculture industry by storm and has seen
major advances in the field of plant leaf disease diagnosis as
documented in [23]. Given the computational power limita-
tions, we were unable to employ K-fold cross-validation for
the deep learning models. However, similar to the traditional
machine learning methods, a grid-search was used to tune
the hyperparameters of each of the deep learning methods.
We compare and contrast the performance of the following
deep learning models on the PlantVillage dataset in table II:
AlexNet [24], MobileNet [25], and ResNet152 [26].

TABLE II: Evaluation metrics of the baseline models on
original PlantVillage dataset

Evaluation Metrics
Model Precision Recall F1-score Test accuracy
AlexNet 0.96 0.97 0.96 0.965
MobileNet 0.95 0.95 0.95 0.953
ResNet152 0.98 0.98 0.98 0.961
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Given the computational constraints and the performances
of the models in table II as evaluated by the evaluation met-
rics, we decided to select ResNet152 as our baseline model
since it yielded the best performance for the computational
power and time taken to train the model.

VI. DATA AUGMENTATION EXPERIMENTS AND RESULTS

In order to evaluate the classifier’s generalization per-
formance, the model was first trained on the PlantVillage
dataset until convergence, and subsequently tested on the
PlantPathology dataset. Since the PlantPathology dataset
only consists of apple diseases, we focused our task to
investigating the impact of augmenting apple images in the
PlantVillage dataset on the classifier’s performance for the
PlantPathology dataset. Our evaluation metrics are Precision,
recall, F-1 score on the PlantPathology dataset. Furthermore,
we present the Precision, recall, F-1 score and test accuracy
on the PlantVillage dataset (with an 80:20 train-val split) to
demonstrate the impact of each data augmentation method.

For CycleGAN and Masked-NST, we use PCA [27] and
T-SNE [28] to reduce the dimensionality of the images
from 196608 (256 × 256 × 3) to 3 dimensions so that the
distributions of the data can be visualized for each of the
4 classes (blue: healthy, red: apple scab, pink: black rot,
cyan: cedar apple rust) as observed in figures 7, and 9. The
formation of 4 distinct clusters in the T-SNE plots indicates
that the distribution of the data for each of the 4 classes
are separable despite the fact that the content of the data
across the 4 classes are the same (set of healthy content
images) and the similarity of the PCA visualizations for
the CycleGAN and NST (i.e. cross-label data augmentation
methods) indicate that these clusters correspond to the same
set of classes. In other words, CycleGAN and NST were
successful in generating distributions of images that look
like diseased plant images using healthy plant images.

TABLE III: Evaluation of augmentation methods on the
PlantVillage dataset

Evaluation Metrics
Augmentation Precision Recall F1-score Test accuracy
None 0.98 0.98 0.98 0.98
Traditional 0.976 0.976 0.976 0.976
Balancing 0.955 0.953 0.953 0.953
CycleGAN 0.962 0.961 0.961 0.961
NST 0.963 0.963 0.963 0.962

TABLE IV: Evaluation of augmentation methods on the
PlantPathology dataset

Evaluation Metrics
Method Precision Recall F1-score Accuracy
None 0.749 0.664 0.665 0.664
Traditional 0.794 0.721 0.722 0.721
Balancing 0.713 0.639 0.642 0.639
CycleGAN 0.702 0.691 0.683 0.691
NST 0.799 0.782 0.777 0.782

A. Traditional Data Augmentation

To establish a baseline, we first implemented traditional
augmentation methods that that include rotation, resizing,
horizontal flipping and sheering on the PlantVillage dataset.
These simple transformations are intended to make the
model more robust, and to prevent over-fitting to non-
semantic representations in the dataset. Initially, we aug-
mented all the classes PlantVillage dataset equally. In ad-
dition, to combat the imbalance in PlantVillage, we also
implemented augmentation to balance all classes in the
dataset. The traditional data augmentation method with-
out class balancing significantly outperformed augmentation
with balancing on both datasets as shown in Tables III and
IV.

Moreover, traditional augmentation with class balancing
performed worse than no augmentation on both datasets,
which can be attributed to overfitting to samples in the un-
derrepresented plant-disease classes; since images underrep-
resented classes are duplicated several times to implement
class balancing.

Although traditional data augmentation had better gen-
eralization performance than no data augmentation, it per-
formed worse on the PlantVillage dataset. Since the statisti-
cal distribution of images is very similar across the PlantVil-
lage dataset, it is expected that no data augmentation would
strongly overfit to the PlantVillage dataset and would not
have good generalization performance. Our results confirm
this, since traditional data augmentation notably improved
the generalization performance of the classifier. Further-
more, it can observed from the confusion matrices in figure
5-b the False positive rate is very high between Scab and
healthy apple leaves, which can attributed to scab being
a very subtle discoloration that the classifier is unable to
robustly capture with traditional data augmentation.

B. CycleGAN

In order to compare the effectiveness of NST to the
more popular GAN-based augmentation methods, a vanilla
CycleGAN [13] was used based on the authors’ implemen-
tation to transform all the 1317 healthy apple leaf images
in PlantVillage’s training set into each of the apple disease
classes (Scab, Black rot, Cedar rust) for data augmentation.
The classifier was then trained on the PlantVillage dataset
with the augmented diseased apple leaf leaves, using the
traditional augmentation policy with no balancing. As shown
in tables III and IV, the performance of the classifier trained
on the CycleGAN augmented dataset was worse than the
model trained with no augmentation for both datasets.

Although CycleGAN qualitatively produces very realistic
results as shown in Figure 6-a, the degradation in per-
formance can be attributed to the failure case where the
disease is applied outside of the leaf region and into the
background, as seen in Figure 6-b. These results are inline
with the findings of [5]; using a vanilla CycleGAN with no
attention mechanism will lead to a degradation in classifier
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(a) No augmentation (b) Traditional (c) CycleGAN (d) NST

Fig. 5: Confusion Matrix of different augmentation methods on the PlantPathology dataset

performance due to the CycleGAN failure cases. This failure
case has also lead to a notable increase in the false positive
between Cedar rust and scab leaves, as well as between
Cedar rust and healthy leaves, as seen in figure 5-c, which
indicates that CycleGAN is unable to help the classifier’s
generalization performance.

(a) Successful disease
transfer

(b) Failure case

Fig. 6: CycleGAN applied to the apple leaf diseases

(a) PCA (b) T-SNE

Fig. 7: 3-D visualizations of the CycleGAN generated data

C. Masked - Neural Style Transfer

Prior to performing Masked-NST, the VGG19 model
was deep trained in accordance to [2] on the PlantVillage
dataset. The following Masked-NST hyperparameters were
set to be the same values as those used in the NST-based
data augmentation implemented in [3]: noise to content
ratio = 0, content weight (α) = 1, style weight (β) =
0.2. As for the optimizer, we decided to use the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) al-
gorithm [29] because L-BFGS does not have a learning rate
hyperparameter and we found that the efficacy of optimizers
such as Adam, when it came to performing Masked-NST,
was highly dependent on the learning rate used and this
learning rate would have to be tuned for each pair of content
and style images in order to obtain ideal results. Similar to
the CycleGAN, Masked-NST was used to transform all the
1317 healthy apple leaf images in PlantVillage’s training
set into each of the apple disease classes (Scab, Black rot,
Cedar rust) for data augmentation, which are then used
to train the classifier. As seen in tables III and IV, while

the performance of the classifier trained on the Masked-
NST augmented dataset deteriorated for PlantVillage dataset
(which can be attributed to a reduction in overfitting), the
classifier generalizes better as it has the best performance
across all evaluation metrics in comparison to the other data
augmentation methods considered on the PlantPathology
dataset.

Fig. 8: Masked-NST applied to the apple leaf diseases

Furthermore, the confusion matrices in figure 5 indicate
that data augmentation using Masked-NST, unlike the other
data augmentation methods considered, is successfully able
to rectify the scab/cedar rust misclassification on the Plant-
Pathology dataset as the classifier is now able to generalize
better

(a) PCA (b) T-SNE

Fig. 9: 3-D visualizations of the NST generated data

VII. CONCLUSION / FUTURE WORK

To combat the significant performance degradation of
classifiers trained on PlantVillage when evaluated on leaf
images captured under different conditions, several data
augmentation methods were evaluated as part of this study.
In summary, masked NST was found to be the most effective
data augmentation method for improving generalization per-
formance. For future work, the effectiveness of masked NST
in improving generalization performance should be com-
pared to attention guided GAN models, such as LeafGAN.
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A. Sofian Zalouk
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