
Histogram-Based Gradient Boosting Trees for
Efficient Graph Learning with Wasserstein

Embeddings
Stanford CS224W

Sharan Ramjee †
sramjee@stanford.edu

Michael Wornow †
mwornow@stanford.edu

Abstract

Molecular property prediction is a task faced in a variety of high-impact medical
and biochemical fields, from drug discovery to the development of diagnostic
screening tools to the synthesis of biologics. Though molecular property pre-
diction has traditionally been a difficult task for machine learning models, re-
cent advances in graph-based techniques have yielded significant performance
increases. This paper contributes to this growing field at the intersection of biol-
ogy, chemistry, and deep learning by offering an improved pipeline for predicting
whether a given molecule is able to inhibit the replication of HIV. We build on
previous work that utilizes Wasserstein graph embeddings and optimize an end-
to-end pipeline to achieve near state-of-the-art performance on the Open Graph
Benchmark’s ogbg-molhiv dataset using a fraction of the model parameters as
the current best model. The source code for this paper is available on GitHub:
https://github.com/sharanramjee/wegl-gbt

1 Introduction

Machine learning (ML) algorithms have led to breakthrough performance in a number of different
fields, from image recognition to natural language processing to speech recognition to drug devel-
opment to self-driving cars [1]. These traditional ML techniques, however, can be inefficient at
learning from graphical data, and thus significant improvement has been achieved on a variety of
graph-structured datasets by leveraging graph-specific ML techniques like graph neural networks
(GNNs) and kernel-based methods [2, 3, 4].

One such domain is the field of chemical biology. Machine learning on graphs can be leveraged for
many biological and chemical applications, including drug development, clinical decision making,
and personalized medicine [5, 6, 3]. As opposed to wet-lab methods that require bench work from lab
scientists, in silico methods like machine learning can help accelerate the development of biologics
and therapeutics by reducing the time, equipment, and monetary requirements of screening molecules.

Molecules can be modeled as graphs, where nodes represent atoms and edges represent the bonds
between those atoms [7]. Each atom’s attributes (e.g. atomic number, charge, etc.) can be represented
as a node feature vector, while each bond’s attributes can similarly be captured in an associated
edge feature vector. The application of advanced graph ML techniques to molecular datasets thus
represents a promising and growing area of active research within the GNN community [8].

Though graph ML techniques have led to superior performance on many sets of graphical data, they
unfortunately suffer from scalability issues as the size of the input graph increases [9, 10]. In order to
address this issue, Kolouri et al.proposed a method entitled Linear Wasserstein Embedding for Graph
Learning (WEGL) [11].

As primarily a method for generating distance metrics between graph embeddings, however, the
final performance of a Linear WEGL model is highly dependent on both the data pre-processing
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and post-WEGL classification steps that are taken. Thus, in this paper we sought to improve the
end-to-end performance of the model described in Kolouri et al.on the Open Graph Benchmark
(OGB) ogbg-molhiv dataset [12], in which the task is to predict whether a given molecule will have
a desired chemical property (namely, inhibiting the replication of HIV).

Though ogbg-molhiv specifically considers the capability of a molecule to inhibit HIV replication, a
generalizable method that proves effective at this task could potentially provide insight towards other
tasks of therapeutic interest, and help to predict other biological properties based on a molecule’s
structure.

The architecture of our final pipeline is as follows: given a set of molecules represented as graphs,
the molecules are run through Linear WEGL to generate their graph embeddings, PCA is applied on
the embeddings to reduce their dimensionality to 20 dimensions, SMOTE is then applied to these
embeddings to reduce the class imbalance between positive and negative examples, and, finally,
this minority over-sampled dataset is fed through a tuned Histogram-Based Gradient Boosting Tree
(HGBT) model which generates a binary prediction on the molecule.

The final average ROC-AUC attained by our model over ten runs is 0.8071 with a standard deviation
between runs of 0.0040, which represents an ROC-AUC score gain of 3.14% over the original
Linear WEGL model and places our model in second place on the current OGB Leaderboard for
ogbg-molhiv (as of March 18, 2021).

Figure 1: An overview of our HGBT-WEGL pipeline

An overview of our proposed WEGL+HGBT pipeline is given in Fig. 1. Here, molecules represented
as graphs are fed into a Linear WEGL model, where the graphs are embedded into a lower dimensional
space. The inset diagram of the WEGL process is taken directly from [11]. In the graph of embeddings,
blue points represent negatively labeled examples while red points represent positive examples. Note
the huge imbalance between blue and red points. Next, these embeddings are fed through SMOTE to
over-sample the positive examples, yielding the chart of balanced embeddings with a 1:1 ratio of red
to blue points. Finally, this balanced dataset is fed through a tuned HGBT model, which generates a
set of decision trees as depicted in the inset diagram. This model then yields a binary prediction on
whether or not the input molecule inhibits HIV replication.
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2 Existing Method

Linear Wasserstein Embedding for Graph Learning (WEGL), as proposed in Kolouri et al., is a
method for efficiently calculating the Wasserstein distance between a set of graph embeddings which
can then be utilized for downstream prediction tasks [11]. This method is currently ranked 10th on
the OGB Benchmark Leaderboard for ogbg-molhiv.

At a high level, Linear WEGL works by embedding an input graph into a Hilbert space where
the Euclidean distance between two graphs’ embeddings approximates the 2-Wasserstein distance
between those two graphs. Unlike previous Wasserstein Embedding-based approaches [9], Kolouri et
al.’s use of the linear optimal transport (LOT) framework introduced in Wang et al.[13] allows them
to (approximately) compute Wasserstein distances as a linear, rather than quadratic, function of the
number of graphs in the dataset [11].

Kolouri et al.[11] denote µi as a probability measure defined on Z ⊆ Rd, with a corresponding
probability density function pi. Using Brenier’s theorem [14], Kolouri et al.[11] compute the
2-Wasserstein distance as:

W2(µi, µj) = ( inf
f∈MP (µi,µj)

∫
Z

||z − f(z)||2dµi(z))
1
2

where MP (µi, µj) = {f : Z → Z ′|f#µi = µj} and f#µi represents the pushforward measure of
µi and f represents a transport map [15].

Next, Kolouri et al.define µ0 to be a reference probability measure with density function p0 such that
fi is defined as the Monge map that pushes µ0 into µi, thus yielding:

fi = argmin
f∈MP (µ0,µi)

∫
Z

||z − f(z)||2dµ0(z)

Kolouri et al.[11] define an equidistant azimuthal projection φ(·) such that φ(µi) , (fi − id)
√
p0,

where id(z) is defined as the identity function. The mapping φ(·) has several key properties,
namely that it provides an isometric embedding for probability measures where the reference is
mapped to zero, the mapping preserves distances to µ0, and the `2 distance between φ(µi) and
φ(µj) approximatesW2(µi, µj). Since φ(·) provides a linear embedding, it is known as the linear
Wasserstein embedding.

WEGL combines node embedding methods with this linear Wasserstein embedding process [11].
More formally, Kolouri et al.[11] denote {Gi = (Vi, Ei)}Mi=1 as a set of M individual graphs, where
each node v ∈ Vi has feature vector xv and each edge (u, v) ∈ Ei has feature vector wuv. Here,
h(·) is some node embedding process – the three considered in Kolouri et al.are Concat, where the
final embedding is comprised of the concatenated embeddings from each layer of the embedding
model, Average, where the final embedding is the average of the embeddings generated from each
layer of the embedding model, and Final, which is simply the final embedding layer’s output – where
h(Gi) = Zi = [z1, . . . , z|Vi|]

> ∈ R|Vi|×d. A reference node embedding Z0 is computed using the
k-means clustering algorithm on the previously calculated node embeddings {Zi}Mi=1. For our model,
we used the Final aggregation function.

Finally, Kolouri et al.[11] compute the linear Wasserstein embedding φ(Zi) with respect to Z0 using
the node embeddings {Zi}Mi=1 and the reference node embedding Z0. Thus, the overall embedding
ψ(Gi) for a graph Gi is given by ψ(Gi) = φ(h(Gi)), where the function ψ : G → H maps any
graph G in the space for all possible graphs G to an embedding ψ(G) in a Hilbert spaceH as shown
in the WEGL component diagram in Fig. 1.

3 Dataset

The ogbg-molhiv [12] dataset is taken from MoleculeNet [16], a large repository of molecular
benchmarks for machine learning, and pre-processed with RDKit [17], a popular cheminformatics
library. The ogbg-molhiv dataset contains 41,127 graphs, where each graph represents a molecule:
the nodes in each graph correspond to the atoms of the molecule, while the edges correspond to
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the bonds between atoms. The average number of nodes and edges per graph is 25.5 and 27.5,
respectively, while the average node degree is 2.2, and thus the graphs in this dataset are smaller and
more tree-like than some of the other more densely clustered datasets in the OGB collection [12].

In terms of features, every node is associated with a 9-dimensional vector that represents biochemical
properties of interest such as the atomic number, formal charge, and chirality of that atom. Each edge
is associated with a 3-dimensional vector of categorical features that describe the type, stereochemistry,
and conjugation of that bond. The dataset comes pre-split in an 80-10-10 train-validation-test ratio,
which we preserve for training, validating, and testing our model.

The predictive task is as follows: Given a graphical representation of a molecule, assign it a binary
label corresponding to whether or not that molecule inhibits HIV replication. The accuracy of the
model is evaluated using the ROC-AUC metric.

4 Methods

4.1 Dimensionality Reduction

The graph embeddings that were generated by our tuned Linear WEGL model are very high dimen-
sional (300 dimensions) and as such, we followed the method described in the original Linear WEGL
paper and applied dimensionality reduction before feeding these embeddings to our downstream
classification model [11]. We tested three different dimensionality reduction techniques – PCA, ICA,
and Sparse Projections – and saw that the best predictive performance was achieved with PCA, which
was the same method used in Kolouri et al..

Principal Components Analysis (PCA) One of the most commonly utilized unsupervised di-
mensionality reduction techniques, PCA was the method that resulted in our classification model
achieving its best performance. PCA works by computing a set of n linearly independent "principal
components" (where n is less than the dimensionality of the data) which maximize the amount of
variance in the original dataset that linear combinations of those n components can explain [18].

Independent Components Analysis (ICA) In addition to PCA, we also considered ICA, which
another commonly used unsupervised dimensionality reduction technique that is primarily used in
signal processing applications for separating multivariate signals into independent non-gaussian
additive signals [19]. More formally, ICA transforms the observed data x = (x1, . . . , xm)>, using
a linear static transformation W as s = Wx, into a vector of maximally independent components
s = (s1, . . . , sn)

> as measured by some function F (s1, . . . , dn) of independence (usually defined
by minimization of mutual information). Unlike PCA, we found that this method did not result in any
improvement in performance.

Sparse Random Projections (SRP) Finally, we also tried to project our embeddings into a lower
dimensional space using sparse random matrix projections. A faster and less memory intensive
alternative to Gaussian random projection matrices, SRP works by projecting its inputs onto a random
matrix, as described in Li et al.[20]. While more conceptually distinct from ICA and PCA, we found
that this method did not result in an improvement in performance.

4.2 Dataset Balancing

The ogbg-molhiv dataset is highly imbalanced – only 3.64% of the data belongs to the positive class.
Thus, a model could achieve a seemingly impressive accuracy of 98.6% by simply always guessing
that a molecule belongs to the negative class, defeating the entire purpose of training a predictive
model.

This issue of class imbalance arises in most chemical classification tasks, in that the desired chemical
properties (e.g. HIV inhibition) are typically rare [21]. In order to achieve both high sensitivity
and specificity on a dataset like ogbg-molhiv, we thus looked towards sampling and augmentation
methods that could reduce the bias induced by this class imbalance.

Synthetic Minority Oversampling Technique (SMOTE) After surveying the literature, we de-
cided to use SMOTE, first described in Chawla et al., on our dataset to increase the representation
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of positive examples [22]. SMOTE has been shown to be effective at remedying class imbalance
issues in molecular datasets seeking to predict bioactive properties of interest [23, 21]. When applied
to the ogbg-molhiv dataset, SMOTE works by over-sampling the positive (minority) class and
under-sampling the negative (majority) class. Unlike other methods of over-sampling, SMOTE does
not simply repeatedly sample the same positive data points. Rather, it generates synthetic positive
examples by interpolating new data points between the existing positive examples. Given the hyperpa-
rameter k, the SMOTE algorithm will loop through each positive example p and identify its k nearest
positive neighbors. It then randomly selects n of the neighbors of p (where the hyperparameter n
depends on how much over-sampling is required) and choose a random point along the line segment
which connects that neighbor to p. This leads to larger, more generalizable decision regions being
formed around each over-sampled positive example than if a model had been trained directly on the
class imbalanced data [22].

We tested several variations on SMOTE, including Borderline SMOTE, SVM-SMOTE, K-Means
SMOTE, and ADASYN. However, we found that our end model achieved its best performance with
vanilla SMOTE.

Borderline Synthetic Minority Oversampling Technique (B-SMOTE) Originally described in
Han et al., B-SMOTE is a popular variant of SMOTE in which only minority class examples that
lie near the decision boundary between classes are over-sampled [24]. While this procedure makes
more assumptions about the structure of the underlying data, if done properly it can lead to better
performance by (a) prioritizing learning on more informative examples that exist at the decision
boundary and (b) ignoring the noise of minority class examples whose nearest neighbors are all
part of the majority class, especially when most of the end model’s prediction errors occur at these
decision boundaries [24].

Support Vector Machine Synthetic Minority Oversampling Technique (SVM-SMOTE) SVM-
SMOTE, proposed by Nguyen et al., functions similarly to B-SMOTE except that it first applies a
standard SVM classifier on the input dataset to get support vectors for the minority examples [25].
Neighborhoods of minority examples around each minority support vector are then identified, and
new minority data points are generated through either extrapolation or interpolation along the lines
connecting each support vector to the data points in its neighborhood [25].

Adaptive Synthetic Sampling (ADASYN) Developed by He et al., ADASYN [26] follows a
similar approach to the aforementioned variants of SMOTE in that it prioritizes over-sampling
minority examples that occur in critical decision-making regions. However, ADASYN is more
flexible in how it makes this assessment. Rather than a hard boundary like the one used by B-SMOTE,
ADASYN weights each minority class example by how many majority class examples are in its
neighborhood. The core idea is that the more majority examples surround a minority example, the
harder that minority example (and others like it) will be to classify [26]. Thus, minority examples
in these types of majority-dominated neighborhoods will be given a higher weighting, and thus
over-sampled at a higher frequency than other minority examples.

K-Means Synthetic Minority Oversampling Technique (KM-SMOTE) K-Means SMOTE also
aims to reduce noise in the over-sampled resulting dataset by following a three-step procedure first
described in [27]. First, the data are clustered into k groups using the k-means algorithm. Next,
the ratio of majority to minority class examples within each cluster is computed. The algorithm
then proportions the total number of synthetic samples that it needs to generate across these clusters,
giving clusters with a higher ratio of majority to minority examples a higher number of minority
samples to generate. Finally, SMOTE is applied to each cluster in order to achieve the desired number
of synthetic samples. The resulting performance can be highly dependent on the hyperparameter k,
but when properly tuned the algorithm has been shown to perform better than SMOTE in certain
cases [27].

4.3 Downstream Classifiers

Linear WEGL relies on the end user providing their own downstream classification model to leverage
the generated embeddings for predictive tasks. Thus, we considered a variety of classification models
to use for our model. We ended up using HGBT for our end model to achieve the highest ROC-AUC,
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but we also tested a variety of alternatives including Random Forests, Gradient Boosted Trees,
Multilayer Perceptron with ReLU and Dropout, and ADABoost.

Gradient Boosted Trees (GBT) Boosting is a type of ensemble machine learning algorithm in
which each iteration of the learning procedure adds an additional component to the model being
trained that corrects a prediction error made by the model in its prior state [28]. By learning many
"weak" classifiers that lack strong predictive power but have uncorrelated biases, boosting enables
one to construct a "strong" classifier by training and then combining these weak classifiers.

GBTs are one of the most popular implementations of such models. A GBT is a specific type of
tree ensemble in which a differentiable loss function is specified, and then a decision tree which
minimizes the model’s overall loss on that function is added to the ensemble at each step of the
learning process [28].

Histogram-Based Gradient Boosting Trees (HGBT) For continuous values like the node em-
beddings considered in this paper, however, classical GBT can be incredibly time consuming, as
the model must consider all of a feature’s distinct values across all data points before being able to
generate a split in its decision trees [28]. By binning the continuous values that a feature can take on
into a discrete set of chunks, the computational demands of building each decision tree during the
boosting process is greatly reduced, thus allowing us to build larger and deeper models than would
have otherwise been possible with vanilla gradient boosting. This procedure of binning features is
known as the Histogram-Based Gradient Boosting Tree (HGBT) model [28].

Random Forests (RF) A random forest is one of the most basic ensemble-based learning methods
for classification tasks. An RF model combines many different, independently trained decision trees
into one central model, aka a "forest" of trees [29]. This combats the natural tendency of decision
trees to overfit to their training data by creating an ensemble of trees in which the majority vote,
rather than any one tree, decides the end model’s output.

Balanced Random Forests (B-RF) As described in Chen et al., B-RF provides a simple extension
of the classical Random Forest technique that better addresses class imbalance in the training dataset
through down-sampling of the majority class [30]. The B-RF algorithm proceeds as follows: instead
of randomly sampling from the entire training dataset at each split in the decision tree as a classical
RF algorithm would do, R-BF bootstraps the same number of samples from the minority and majority
classes so that each node considers an equal representation of majority and minority class examples.

Dropouts meet Multiple Additive Regression Trees (DART) Developed by Rashmi et al., the
DART algorithm combines boosted regression trees with dropout in which a random subset of
decision trees in the model are muted during each training iteration [31]. This helps to combat what
is known as the "shrinkage" effect of traditional boosted tree models, where each successive tree has
less and less influence on the overall model’s predictive performance.

Multilayer Perceptron (MLP) Finally, we also tried to construct a multilayer perceptron classifi-
cation model to serve a a classical deep learning baseline to compare to our graph-based machine
learning model. We tested a variety of MLP architectures, including varying the number of layers
from 1 to 10, using different activation functions (ReLU, tanh, sigmoid), including/not including
dropout, and using different optimizers like SGD and ADAM. As expected, none of these models
yielded performance that would qualify for the OGB Leaderboard.

5 Quantitative Analysis

For the pipeline, we used Kolouri et al.’s [11] implementation of Linear WEGL with extensive
hyperparameter tuning that was was done using an exhaustive grid search [32]. However, we found
that the default set of hyperparameters that were empirically determined by Kolouri et al.[11] for
Linear WEGL worked best, and thus these were the sets of hyperparameters that were used for
generating the graph embeddings for our models.

The graph embedding generation, dimensionality reduction, dataset balancing, and downstream
classifier were all performed on a Nvidia Tesla K80 GPU. In order to level the playing field for
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testing each component of our pipeline, we fix the methods used for the remaining components of
each pipeline for a fair comparison. The evaluation of the dimensionality reduction methods is done
with SMOTE and HGBT fixed. The evaluation of the dataset balancing methods is done with PCA
and HGBT fixed across all the dataset balancing methods considered. Finally, the evaluation of the
downstream classifiers is done with PCA and SMOTE fixed across all the downstream classifiers
considered for the dimensionality reduction and dataset balancing components of the pipeline,
respectively.

The performances of the dimensionality reduction, dataset balancing, and downstream classifiers are
compared amongst each other as a measure of the ROC-AUC score of the downstream classifier on
the ogbg-molhiv test set. This is evaluated using an OGB model evaluator, where the average and
unbiased standard deviation of the test set ROC-AUC is reported across 10 runs with random seeds,
which were not fixed.

5.1 Dimensionality Reduction

The implementations of all the dataset balancing methods considered are given in the scikit-learn
library [33]. Dimensionality reduction is applied here for three reasons - to reduce the computational
burden of computing the reference node embedding using k-means clustering, to reduce the com-
putation burden of training the downstream classifier, and to reduce overfitting. The quantitative
evaluation of the dimensionality reduction methods, as detailed in Section 4.1, is given in Table 1.

Table 1: Quantitative evaluation of dimensionality reduction methods
Method Test ROC-AUC Valid ROC-AUC

None 0.7837 ± 0.0056 0.8106 ± 0.0076
ICA 0.7893 ± 0.0068 0.7658 ± 0.0093
SRP 0.7955 ± 0.0034 0.7798 ± 0.0072
PCA 0.8071 ± 0.0040 0.8226 ± 0.0068

We observed that PCA, as proposed in the original Linear WEGL paper [11], gave us the best end
model performance. It is admittedly a bit opaque to us as to why our graph embeddings were more
amenable to PCA than the alternative dimensionality reduction methods considered. What is clear,
however, is that reducing the dimensionality of the graph embeddings before applying a classification
model resulted in a substantial improvement in performance, likely due to a reduction in overfitting.

5.2 Dataset Balancing

The implementations of all the dataset balancing methods considered are given in the
imbalanced-learn library [34]. Furthermore, given that the main issue with the ogbg-molhiv
dataset is that it consists of extremely fewer instances of one class over the other, a minority oversam-
pling strategy was used across all the methods in order to equalize the number of instances of each
class in the train set of the dataset. The quantitative evaluation of the dataset balancing methods, as
detailed in Section 4.2, is given in Table 2.

Table 2: Quantitative evaluation of dataset balancing methods
Method Test ROC-AUC Valid ROC-AUC

KM-SMOTE 0.7382 ± 0.0066 0.8316 ± 0.0095
SVM-SMOTE 0.7704 ± 0.0039 0.8917 ± 0.0043
None 0.7751 ± 0.0080 0.8156 ± 0.0102
B-SMOTE 0.7845 ± 0.0049 0.9004 ± 0.0033
ADASYN 0.7986 ± 0.0084 0.8155 ± 0.0063
SMOTE 0.8071 ± 0.0040 0.8226 ± 0.0068

Here, we did not consider using a random sampler that over-samples by merely duplicating the
original samples from the minority class. This is because it would not bring diversity to the training
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set and as such, would not result in a worthwhile improvement in generalizability for improved
performance on the test set. Instead, we focused on SMOTE, ADASYN, and its variants as they
generate new samples in by interpolation. Furthermore, we notice that the performance of ADASYN
and the variants of SMOTE are inferior to that of SMOTE. The inferior performance of ADASYN
can be attributed to the fact that ADASYN focuses on generating samples next to the original
samples, which, when are closely clustered together in the latent space similar to the scenario with the
ogbg-molhiv, lead to wrong classifications when clustering using the k-Nearest Neighbors classifier
during interpolation as examined by Kurniawati et al.[35]. The inferior performance of the variants of
SMOTE, while could be artefacts of their unique clustering functions similar to the case of ADASYN,
can be attributed to the fact that they do not make any distinction between easy and hard samples
to be classified using their clustering rules. i.e. the samples interpolated for the minority class are
mixed in with those of the majority class, thus resulting in an inferior performance on the downstream
classification task as detailed by Fernández et al.[36].

5.3 Downstream Classifiers

The implementations of all the downstream classifiers considered can be found in either the
scikit-learn [33] or XGBoost [37] libraries. The quantitative evaluation of the downstream
classifiers, as detailed in Section 4.3, is given in Table 3.

Table 3: Quantitative evaluation of downstream classifiers
Method Test ROC-AUC Valid ROC-AUC

MLP 0.7379 ± 0.0355 0.8118 ± 0.0085
RF 0.7695 ± 0.0151 0.7908 ± 0.0252
B-RF 0.7731 ± 0.0097 0.7782 ± 0.0166
DART 0.7610 ± 0.0042 0.8370 ± 0.0034
GBT 0.7586 ± 0.0048 0.8440 ± 0.0083
HGBT 0.8071 ± 0.0040 0.8226 ± 0.0068

The performance of the MLP model, despite extensive hyperparameter tuning and cost-sensitive
learning [38] for taking into account the class imbalance in the dataset, is inferior to those of any of
the tree-based ensemble models considered. This can be attributed the fact that while the dataset
has been balanced, SMOTE merely creates synthetic samples by interpolating the samples from the
minority class, which can still lead to an inferior generalizable performance if these samples from
the minority class are not diverse. This is where decision trees have an advantage as they compute
conditions at each stage of splitting while taking both classes into consideration, which allows them
to have a superior performance on imbalanced datasets. In particular, this ability of the models to
generalize better to imbalanced datasets is greater in the case of gradient boosted ensemble based
decision trees such as the HGBT model, where gradient boosting, while slow, allows the trees in
the ensemble to be linked and take decisions sequentially. This improves the feature splits created
in subsequent trees since they take the decisions made by the previous trees in the ensemble into
account, thus, allowing the HGBT model to outperform the other downstream classifiers considered.

5.4 State-of-the-Art Graph Learning Methods

As of March 18, 2021, our pipeline ranks 2nd on the ogbg-molhiv leaderboard among the other
graph learning methods, as shown in Table 4. In particular, we see that our WEGL+HGBT pipeline
outperforms the WEGL baseline on the test set ROC-AUC metric by approximately 3.14, with a
significant reduction in the number of parameters in the model. Here, WEGL comprises of 210,212
parameters while the HGBT comprises of 101,002 parameters, leading to a total of 311,214 trainable
parameters for the pipeline. This reduction in the number of trainable parameters in a HGBT model
over a Random Forest model, which was the downstream classifier used in the original WEGL
baseline, can be attributed to the discretization achieved by HGBTs. The construction of decision
trees in the ensemble is significantly sped up by binning continuous input features into a fixed number
of buckets, thus leading to a reduction in the number of unique values for each of the features, which
in turn leads to a reduction in the number of trainable parameters in the HGBT.
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Table 4: ogbg-molhiv Leaderboard (as of March 18, 2021)
Rank Method Test ROC-AUC Validation ROC-AUC # of Params

1 Neural FingerPrints 0.8232 ± 0.0047 0.8331 ± 0.0054 2,425,102
2 WEGL + HGBT (Ours) 0.8071 ± 0.0040 0.8226 ± 0.0068 311,214
2 MorganFP+Rand. Forest 0.8060 ± 0.0010 0.8420 ± 0.0030 230,000
3 DGN 0.7970 ± 0.0097 0.8470 ± 0.0047 114,065
4 DeeperGCN+FLAG 0.7942 ± 0.0120 0.8425 ± 0.0061 531,976
5 PNA 0.7905 ± 0.0132 0.8519 ± 0.0099 326,081
6 GCN+GraphNorm 0.7883 ± 0.0100 0.7904 ± 0.0115 526,201
7 HIMP 0.7880 ± 0.0082 Not Reported 153,029
8 DeeperGCN 0.7858 ± 0.0117 0.8427 ± 0.0063 531,976
9 GSN 0.7799 ± 0.0100 0.8658 ± 0.0084 3,338,701
10 WEGL 0.7757 ± 0.0111 0.8101 ± 0.0097 361,064
11 GIN+virtual node+FLAG 0.7748 ± 0.0096 0.8438 ± 0.0128 3,336,306
12 GIN+virtual node 0.7707 ± 0.0149 0.8479 ± 0.0068 3,336,306
13 GCN+FLAG 0.7683 ± 0.0102 0.8176 ± 0.0087 527,701
14 GIN+FLAG 0.7654 ± 0.0114 0.8225 ± 0.0155 1,885,206
15 GCN 0.7606 ± 0.0097 0.8204 ± 0.0141 527,701
16 GCN+virtual node 0.7599 ± 0.0119 0.8384 ± 0.0091 1,978,801
17 GIN 0.7558 ± 0.0140 0.8232 ± 0.0090 1,885,206

6 Qualitative Analysis

In addition to our quantitative experiments, we wanted to gain a better qualitative understanding
of the types of correct and incorrect predictions that are being made by our model. We randomly
sampled two examples each from the testing set of true positives (Fig. 2), true negatives (Fig. 3),
false positives (Fig. 4), and false negatives (Fig. 5) and have displayed these molecules in their
respective Figures. Each node in the graphs in these figures is a color-coded atom labeled with its
atomic symbol, while the edges represent bonds between atoms (please note that all bonds in these
molecules are visually depicted with the same type of edge, regardless of the actual bond type).

As seen in Fig. 2 depicting true positives, our model is able to effectively embed complex molecules
that have the desired property of interest. These molecules all share many PN3 groups, which could
be a feature that our model is picking up. This is further corroborated by Fig. 4, which shows
examples of false positives. These false positives also have several PN3 groups, a feature that is not
seen in any of the true/false negatives that we sampled. Thus, it appears that our model is identifying
PN3 as a feature that is highly correlated with the ability to inhibit HIV replication.

The true/false negatives predicted by our model in Fig. 3 and Fig. 5 seem to have additional molecular
motifs not found in the true/false positives due to the presence of atoms that are not N, P, B, or C.
Thus, in addition to the structure itself of the molecule, this result indicates that our model is also
leveraging node features to distinguish between positive and negative examples.

Figure 2: Two randomly selected True Positives predicted by our model, i.e. molecules that are
correctly predicted to inhibit HIV replication.
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Figure 3: Two randomly selected True Negatives predicted by our model, i.e. molecules that are
correctly predicted to not inhibit HIV replication.

Figure 4: Two randomly selected False Positives predicted by our model, i.e. molecules that are
predicted to inhibit HIV replication but actually lack that ability.

Figure 5: Two randomly selected False Negatives predicted by our model, i.e. molecules that inhibit
HIV replication but are predicted to lack that ability.

7 Conclusion

We were able to achieve near state-of-the-art performance on the ogbg-molhiv dataset by building
an end-to-end prediction pipeline that utilized graph embeddings derived from the computationally
efficient Linear WEGL procedure described in Kolouri et al.[11]. Compared to the model described
in the original Kolouri et al.paper, our model is able to achieve an average higher performance of 3.14
ROC-AUC points (0.8071 v. 0.7757) on predicting the HIV inhibitory characteristics of a molecule
based on its chemical structure. The further development of in sitro methods like ours which leverage
the power of both machine learning and graphical data to predict chemical properties of interest can
help speed up the screening of molecules and development of small molecule therapeutics for disease.
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